Chapter 1 Exercise A


1. Suppose $a$ and $b$ are real numbers, not both 0. Find real numbers $c$ and $d$ such that\[\frac{1}{a+bi}=c+di.\]Solution: Because $(a+bi)(a-bi)=a^2+b^2$, one has\[\frac{1}{a+bi}=\frac{a-bi}{a^2+b^2}.\]Hence\[c=\frac{a}{a^2+b^2},d=-\frac{b}{a^2+b^2}.\]


2. Show that \[\frac{-1+\sqrt{3}i}{2}\] is a cube root of 1 (meaning that its cube equals 1).

Soltion1:From direct computation, we have\[\left(\frac{-1+\sqrt{3}i}{2}\right)^2=\frac{-1-\sqrt{3}i}{2},\]hence \[\left(\frac{-1+\sqrt{3}i}{2}\right)^3=\frac{-1-\sqrt{3}i}{2}\cdot\frac{-1+\sqrt{3}i}{2}=1.\]This means $\dfrac{-1+\sqrt{3}i}{2}$ is a cube root of 1.


Solution2: Note that \[(a+bi)+(a-bi)=2a\] and \[(a+bi)(a-bi)=a^2+b^2,\] it follows that $\dfrac{-1+\sqrt{3}i}{2}$ is a root of the quadratic equation $x^2+x+1=0$.
For \[\frac{-1+\sqrt{3}i}{2}+\frac{-1-\sqrt{3}i}{2}=-1\] and \[\frac{-1+\sqrt{3}i}{2}\frac{-1-\sqrt{3}i}{2}=1.\] Because $x^3-1=(x-1)(x^2+x+1)$, we obtain the conclusion.


3. Find two distinct square roots of $i$ .

Solution: If we know that $i=e^{\pi i/2}$, then the square roots are \[e^{\pi i/4}\quad\text{and}\quad e^{(\pi i/2+2\pi i)/2}=e^{5\pi i/4}.\] Note that for any $x\in\mathbb R$, one has $e^{xi}=\cos x+i\sin x$. Then \[e^{\pi i/4}=\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}=\frac{\sqrt{2}(1+i)}{2}\] and \[e^{5\pi i/4}=\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}=\frac{-\sqrt{2}(1+i)}{2}.\] Hence the roots are $\dfrac{\sqrt{2}(1+i)}{2}$ and $-\dfrac{\sqrt{2}(1+i)}{2}$.

Remark: If we don’t know this fact, then we should recall how to solve the roots of $x^8-1=0$ or $x^4+1=0$ since $x^2+i=0$ means $x^4+1=0$.


4. Show that $\alpha+\beta=\beta+\alpha$ for all $\alpha,\beta\in\mathbb C$.

Solution: Let $\alpha=x+yi$ and $\beta=z+wi$, where $x,y,z,w\in\mathbb R$, then \[\alpha+\beta=(x+yi)+(z+wi)=(x+z)+(y+w)i.\] Similarly, \[\beta+\alpha=(z+wi)+(x+yi)=(z+x)+(w+y)i.\] Because $x+z=z+x$ and $y+w=w+y$, we obtain that $\alpha+\beta=\beta+\alpha$.


5. Show that $(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$ for all $\alpha,\beta,\lambda\in\mathbb{C}$.

Solution: Let $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, $\lambda=x_3+y_3i$, where $x_1,x_2,x_3$ and $y_1,y_2,y_3$ are real numbers. Then \begin{aligned} (\alpha+\beta)+\lambda=&((x_1+x_2)+(y_1+y_2)i)+(x_3+y_3i)\\ =&((x_1+x_2)+x_3)+((y_1+y_2)+y_3)i. \end{aligned} Similarly, $\alpha+(\beta+\lambda)=(x_1+(x_2+x_3))+(y_1+(y_2+y_3))i$. Note that\[(x_1+x_2)+x_3=x_1+(x_2+x_3)\quad\text{and}\quad (y_1+y_2)+y_3=y_1+(y_2+y_3),\]it follows that $(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$.

6. Show that $(\alpha\beta)\lambda=\alpha(\beta\lambda)$ for all $\alpha,\beta,\lambda\in\mathbb{C}$.

Solution: Let $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, $\lambda=x_3+y_3i$, where $x_1,x_2,x_3$ and $y_1,y_2,y_3$ are real numbers. Then \begin{align*} (\alpha\beta)\lambda=&((x_1x_2-y_1y_2)+(x_1y_2+y_1x_2)i)(x_3+y_3i)\\ =&((x_1x_2-y_1y_2)x_3-(x_1y_2+y_1x_2)y_3)\\&+((x_1x_2-y_1y_2)x_3+(x_1y_2+y_1x_2)y_3)i. \end{align*} Similarly, one has \begin{align*} \alpha(\beta\lambda)=&(x_1+y_1i)((x_2x_3-y_2y_3)+(x_2y_3+y_2x_3)i)\\ =&(x_1(x_2x_3-y_2y_3)-y_1(x_2y_3+y_2x_3))\\&+(x_1(x_2y_3-y_2x_3)+y_1(x_2x_3+y_2y_3))i. \end{align*} It is easy to see\[ (x_1x_2-y_1y_2)x_3-(x_1y_2+y_1x_2)y_3=x_1(x_2x_3-y_2y_3)-y_1(x_2y_3+y_2x_3) \]and\[ (x_1x_2-y_1y_2)x_3+(x_1y_2+y_1x_2)y_3=x_1(x_2x_3-y_2y_3)-y_1(x_2y_3+y_2x_3), \] hence we deduce that $(\alpha\beta)\lambda=\alpha(\beta\lambda)$.


7. Show that for every $\alpha\in\mathbb C$, there exists a unique $\beta\in\mathbb C$ such that $\alpha+\beta=0$.

Solution: Let $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, where $x_1,x_2$ and $y_1,y_2$ are real numbers. If $\alpha+\beta=0$, then \[ 0=\alpha+\beta=(x_1+x_2)+(y_1+y_2)i. \]This means $x_2=-x_1$ and $y_2=-y_1$, which implied uniqueness. If $\beta=-x_1-y_1i$, we also have $\alpha+\beta=0$, which implies existence.


8. Show that for every $\alpha\in\mathbb C$ with $\alpha\ne0$, there exists a unique $\beta\in\mathbb C$ such that $\alpha\beta=1$.

Solution: We already know the existence in Problem 1. Now let us show the uniqueness, if $\alpha\beta=1$, then\[\beta=1\cdot\beta=\left(\frac{1}{\alpha}\cdot\alpha\right)\cdot\beta=\frac{1}{\alpha}\cdot\left(\alpha\cdot\beta\right)=\frac{1}{\alpha}\cdot1=\frac{1}{\alpha}.\]Here the third equality follows from Problem 6.


9. Show that $\lambda(\alpha+\beta)=\lambda\alpha+\lambda\beta$ for all $\lambda,\alpha,\beta\in\mathbb C$.

Solution: Suppose $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, $\lambda=a+bi$, where $x_1,x_2,a$ and $y_1,y_2,b$ are real numbers. Then \begin{align*} \lambda(\alpha+\beta)=&(a+bi)((x_1+x_2)+(y_1+y_2)i)\\ =&(a(x_1+x_2)-b(y_1+y_2))+(a(y_1+y_2)+b(x_1+x_2))i\\ =&[(ax_1-by_1)+(ay_1+bx_1)i]+[(ax_2-by_2)+(ay_2+bx_2)i]\\ =&\lambda\alpha+\lambda\beta. \end{align*}


10. Find $x\in\mathbb{R}^4$ such that\[(4,-3,1,7)+2x=(5,9,-6,8).\]

Solution: Because $(4,-3,1,7)+2x=(5,9,-6,8)$, one has \[2x=(5,9,-6,8)-(4,-3,1,7)=(1,12,-7,1),\]hence\[x=\frac{1}{2}(1,12,-7,1)=\left(\frac{1}{2},6,\frac{-7}{2},\frac{1}{2}\right).\]


11. Explain why there does not exist $\lambda\in\mathbb C$ such that\[\lambda(2-3i,5+4i,-6+7i)=(12-5i,7+22i,-32-9i).\]Solution: If such $\lambda\in\mathbb C$ exists, then we have \[\lambda(2-3i)=12-5i\quad\text{and}\quad\lambda(-6+7i)=-32-9i.\]It follows that \[(2-3i)(-32-9i)=(-6+7i)(12-5i),\]this means \[-91+78i=-37+114i, \]which is impossible. Hence such $\lambda\in\mathbb C$ does not exist.


12. Show that $(x+y)+z=x+(y+z)$ for all $x, y, z\in\mathbb F^n$.

Solution: Suppose $x=(x_1,\cdots,x_n)$, $y=(y_1,\cdots,y_n)$ and $z=(z_1,\cdots,z_n)$. Then \begin{align*} (x+y)+z=&((x_1,\cdots,x_n)+(y_1,\cdots,y_n))+(z_1,\cdots,z_n)\\ =&(x_1+y_1,\cdots,x_n+y_n)+(z_1,\cdots,z_n)\\ =&((x_1+y_1)+z_1,\cdots,(x_n+y_n)+z_n)\\ =&(x_1+(y_1+z_1),\cdots,x_n+(y_n+z_n))\\ =&(x_1,\cdots,x_n)+(y_1+z_1,\cdots,y_n+z_n)\\ =&(x_1,\cdots,x_n)+((y_1,\cdots,y_n)+(z_1,\cdots,z_n))\\ =&x+(y+z). \end{align*}


13. Show that $(ab)x=a(bx)$ for all $x\in\mathbb F^n$ and all $a,b \in\mathbb F$.

Solution: Suppose $x=(x_1,\cdots,x_n)$. Then \begin{align*} (ab)x=&ab(x_1,\cdots,x_n)=((ab)x_1,\cdots,(ab)x_n)\\ =&(a(bx_1),\cdots,a(bx_n))=a(bx_1,\cdots,bx_n)\\ =&a(bx). \end{align*}


14. Show that $1x=x$ for all $x\in\mathbb F^n$.

Solution: Suppose $x=(x_1,\cdots,x_n)$. Then \[ 1x=1(x_1,\cdots,x_n)=(1\cdot x_1,\cdots,1\cdot x_n)=(x_1,\cdots,x_n)=x. \]


15. Show that $\lambda(x+y)=\lambda x+\lambda y$ for all $\lambda\in\mathbb F$ and all $\lambda\in\mathbb F^n$.

Solution: Suppose $x=(x_1,\cdots,x_n)$ and $y=(y_1,\cdots,y_n)$. Then \begin{align*} \lambda(x+y)=&\lambda((x_1,\cdots,x_n)+(y_1,\cdots,y_n))\\ =&\lambda(x_1+y_1,\cdots,x_n+y_n)=(\lambda(x_1+y_1),\cdots,\lambda(x_n+y_n))\\ =&(\lambda x_1,\cdots,\lambda x_n)+(\lambda y_1,\cdots,\lambda y_n)\\ =&\lambda x+\lambda y. \end{align*}


16. Show that $(a+b)x=ax+bx$ for all $a,b\in\mathbb F$ and all $x\in\mathbb F^n$.

Solution: Suppose $x=(x_1,\cdots,x_n)$. Then \begin{align*} (a+b)x=&(a+b)(x_1,\cdots,x_n)=((a+b)x_1,\cdots,(a+b)x_n)\\ =&(ax_1+bx_1,\cdots,ax_n+bx_n)\\ =&(ax_1,\cdots,ax_n)+(bx_1,\cdots,bx_n)\\ =&a(x_1,\cdots,x_n)+b(x_1,\cdots,x_n)\\ =&ax+bx. \end{align*}


About Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.

This entry was posted in Chapter 1 and tagged .