Chapter 1 Exercise A


1.Solution: Because $(a+bi)(a-bi)=a^2+b^2$, one has\[\frac{1}{a+bi}=\frac{a-bi}{a^2+b^2}.\]Hence\[c=\frac{a}{a^2+b^2},d=-\frac{b}{a^2+b^2}.\]


2. Solution1:From direct computation, we have\[\left(\frac{-1+\sqrt{3}i}{2}\right)^2=\frac{-1-\sqrt{3}i}{2},\]hence \[\left(\frac{-1+\sqrt{3}i}{2}\right)^3=\frac{-1-\sqrt{3}i}{2}\cdot\frac{-1+\sqrt{3}i}{2}=1.\]This means $\dfrac{-1+\sqrt{3}i}{2}$ is a cube root of 1.


Solution2: Note that \[(a+bi)+(a-bi)=2a\] and \[(a+bi)(a-bi)=a^2+b^2,\] it follows that $\dfrac{-1+\sqrt{3}i}{2}$ is a root of the quadratic equation $x^2+x+1=0$.
For \[\frac{-1+\sqrt{3}i}{2}+\frac{-1-\sqrt{3}i}{2}=-1\] and \[\frac{-1+\sqrt{3}i}{2}\frac{-1-\sqrt{3}i}{2}=1.\] Because $x^3-1=(x-1)(x^2+x+1)$, we obtain the conclusion.


3. Solution: If we know that $i=e^{\pi i/2}$, then the square roots are \[e^{\pi i/4}\quad\text{and}\quad e^{(\pi i/2+2\pi i)/2}=e^{5\pi i/4}.\] Note that for any $x\in\mathbb R$, one has $e^{xi}=\cos x+i\sin x$. Then \[e^{\pi i/4}=\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}=\frac{\sqrt{2}(1+i)}{2}\] and \[e^{5\pi i/4}=\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}=\frac{-\sqrt{2}(1+i)}{2}.\] Hence the roots are $\dfrac{\sqrt{2}(1+i)}{2}$ and $-\dfrac{\sqrt{2}(1+i)}{2}$.

Remark: If we don’t know this fact, then we should recall how to solve the roots of $x^8-1=0$ or $x^4+1=0$ since $x^2+i=0$ means $x^4+1=0$.


4. Solution: Let $\alpha=x+yi$ and $\beta=z+wi$, where $x,y,z,w\in\mathbb R$, then \[\alpha+\beta=(x+yi)+(z+wi)=(x+z)+(y+w)i.\] Similarly, \[\beta+\alpha=(z+wi)+(x+yi)=(z+x)+(w+y)i.\] Because $x+z=z+x$ and $y+w=w+y$, we obtain that $\alpha+\beta=\beta+\alpha$.


5. Solution: Let $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, $\lambda=x_3+y_3i$, where $x_1,x_2,x_3$ and $y_1,y_2,y_3$ are real numbers. Then \begin{aligned} (\alpha+\beta)+\lambda=&((x_1+x_2)+(y_1+y_2)i)+(x_3+y_3i)\\ =&((x_1+x_2)+x_3)+((y_1+y_2)+y_3)i. \end{aligned} Similarly, $\alpha+(\beta+\lambda)=(x_1+(x_2+x_3))+(y_1+(y_2+y_3))i$. Note that\[(x_1+x_2)+x_3=x_1+(x_2+x_3)\quad\text{and}\quad (y_1+y_2)+y_3=y_1+(y_2+y_3),\]it follows that $(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)$.


6. Solution: Let $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, $\lambda=x_3+y_3i$, where $x_1,x_2,x_3$ and $y_1,y_2,y_3$ are real numbers. Then \begin{align*} (\alpha\beta)\lambda=&((x_1x_2-y_1y_2)+(x_1y_2+y_1x_2)i)(x_3+y_3i)\\ =&((x_1x_2-y_1y_2)x_3-(x_1y_2+y_1x_2)y_3)\\&+((x_1x_2-y_1y_2)x_3+(x_1y_2+y_1x_2)y_3)i. \end{align*} Similarly, one has \begin{align*} \alpha(\beta\lambda)=&(x_1+y_1i)((x_2x_3-y_2y_3)+(x_2y_3+y_2x_3)i)\\ =&(x_1(x_2x_3-y_2y_3)-y_1(x_2y_3+y_2x_3))\\&+(x_1(x_2y_3-y_2x_3)+y_1(x_2x_3+y_2y_3))i. \end{align*} It is easy to see\[ (x_1x_2-y_1y_2)x_3-(x_1y_2+y_1x_2)y_3=x_1(x_2x_3-y_2y_3)-y_1(x_2y_3+y_2x_3) \]and\[ (x_1x_2-y_1y_2)x_3+(x_1y_2+y_1x_2)y_3=x_1(x_2x_3-y_2y_3)-y_1(x_2y_3+y_2x_3), \] hence we deduce that $(\alpha\beta)\lambda=\alpha(\beta\lambda)$.


7. Solution: Let $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, where $x_1,x_2$ and $y_1,y_2$ are real numbers. If $\alpha+\beta=0$, then \[ 0=\alpha+\beta=(x_1+x_2)+(y_1+y_2)i. \]This means $x_2=-x_1$ and $y_2=-y_1$, which implied uniqueness. If $\beta=-x_1-y_1i$, we also have $\alpha+\beta=0$, which implies existence.


8. Solution: We already know the existence in Problem 1. Now let us show the uniqueness, if $\alpha\beta=1$, then\[\beta=1\cdot\beta=\left(\frac{1}{\alpha}\cdot\alpha\right)\cdot\beta=\frac{1}{\alpha}\cdot\left(\alpha\cdot\beta\right)=\frac{1}{\alpha}\cdot1=\frac{1}{\alpha}.\]Here the third equality follows from Problem 6.


9. Solution: Suppose $\alpha=x_1+y_1i$, $\beta=x_2+y_2i$, $\lambda=a+bi$, where $x_1,x_2,a$ and $y_1,y_2,b$ are real numbers. Then \begin{align*} \lambda(\alpha+\beta)=&(a+bi)((x_1+x_2)+(y_1+y_2)i)\\ =&(a(x_1+x_2)-b(y_1+y_2))+(a(y_1+y_2)+b(x_1+x_2))i\\ =&[(ax_1-by_1)+(ay_1+bx_1)i]+[(ax_2-by_2)+(ay_2+bx_2)i]\\ =&\lambda\alpha+\lambda\beta. \end{align*}


10. Solution: Because $(4,-3,1,7)+2x=(5,9,-6,8)$, one has \[2x=(5,9,-6,8)-(4,-3,1,7)=(1,12,-7,1),\]hence\[x=\frac{1}{2}(1,12,-7,1)=\left(\frac{1}{2},6,\frac{-7}{2},\frac{1}{2}\right).\]


11. Solution: If such $\lambda\in\mathbb C$ exists, then we have \[\lambda(2-3i)=12-5i\quad\text{and}\quad\lambda(-6+7i)=-32-9i.\]It follows that \[(2-3i)(-32-9i)=(-6+7i)(12-5i),\]this means \[-91+78i=-37+114i, \]which is impossible. Hence such $\lambda\in\mathbb C$ does not exist.


12. Solution: Suppose $x=(x_1,\cdots,x_n)$, $y=(y_1,\cdots,y_n)$ and $z=(z_1,\cdots,z_n)$. Then \begin{align*} (x+y)+z=&((x_1,\cdots,x_n)+(y_1,\cdots,y_n))+(z_1,\cdots,z_n)\\ =&(x_1+y_1,\cdots,x_n+y_n)+(z_1,\cdots,z_n)\\ =&((x_1+y_1)+z_1,\cdots,(x_n+y_n)+z_n)\\ =&(x_1+(y_1+z_1),\cdots,x_n+(y_n+z_n))\\ =&(x_1,\cdots,x_n)+(y_1+z_1,\cdots,y_n+z_n)\\ =&(x_1,\cdots,x_n)+((y_1,\cdots,y_n)+(z_1,\cdots,z_n))\\ =&x+(y+z). \end{align*}


13. Solution: Suppose $x=(x_1,\cdots,x_n)$. Then \begin{align*} (ab)x=&ab(x_1,\cdots,x_n)=((ab)x_1,\cdots,(ab)x_n)\\ =&(a(bx_1),\cdots,a(bx_n))=a(bx_1,\cdots,bx_n)\\ =&a(bx). \end{align*}


14. Solution: Suppose $x=(x_1,\cdots,x_n)$. Then \[ 1x=1(x_1,\cdots,x_n)=(1\cdot x_1,\cdots,1\cdot x_n)=(x_1,\cdots,x_n)=x. \]


15. Solution: Suppose $x=(x_1,\cdots,x_n)$ and $y=(y_1,\cdots,y_n)$. Then \begin{align*} \lambda(x+y)=&\lambda((x_1,\cdots,x_n)+(y_1,\cdots,y_n))\\ =&\lambda(x_1+y_1,\cdots,x_n+y_n)=(\lambda(x_1+y_1),\cdots,\lambda(x_n+y_n))\\ =&(\lambda x_1,\cdots,\lambda x_n)+(\lambda y_1,\cdots,\lambda y_n)\\ =&\lambda x+\lambda y. \end{align*}


16. Solution: Suppose $x=(x_1,\cdots,x_n)$. Then \begin{align*} (a+b)x=&(a+b)(x_1,\cdots,x_n)=((a+b)x_1,\cdots,(a+b)x_n)\\ =&(ax_1+bx_1,\cdots,ax_n+bx_n)\\ =&(ax_1,\cdots,ax_n)+(bx_1,\cdots,bx_n)\\ =&a(x_1,\cdots,x_n)+b(x_1,\cdots,x_n)\\ =&ax+bx. \end{align*}


About Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
This entry was posted in Chapter 1 and tagged .