# Chapter 3 Exercise B

1. Give an example of a linear map $T$ such that $\dim \mathrm{null} T=3$ and $\dim \mathrm{range} T = 2$.

Solution: Assume $V$ is 5-dimensional vector space with a basis $e_1$, $\cdots$, $e_5$. Define $T\in\ca L(V,V)$ by $Te_1=e_1,Te_2=e_2,Te_3=Te_4=Te_5=0.$Then $\mathrm{null} T=\mathrm{span}(e_3,e_4,e_5)$, hence $\dim \mathrm{null} T=3$. Similarly, $\mathrm{range} T=\mathrm{span}(e_1,e_2)$, hence $\dim \mathrm{range} T=2$.

2. Suppose $V$ is a vector space and $S, T \in\ca L(V, V)$ are such that $\m{range} S \subset \m{null} T.$ Prove that $(ST)^2=0$.

Solution: Since $\m{range} S \subset \m{null} T$, it follows that $TSv=0$ for any $v\in V$. Hence for any $u\in V$, $(ST)^2u=S[(TS)Tu]=S0=0,$i.e. $(ST)^2=0$.

3. Suppose $v_1$, $\cdots$, $v_m$ is a list of vectors in $V$. Define $T\in\ca L(\mb F^m, V )$ by $T(z_1,\cdots,z_m)=z_1v_1+\cdots+z_mv_m.$(a) What property of $T$ corresponds to $v_1$, $\cdots$, $v_m$ spanning $V$ ?(b) What property of $T$ corresponds to $v_1$, $\cdots$, $v_m$ being linearly independent?

Solution: (a) Note that $\m{range}T=\m{span}(v_1,\cdots,v_m)$, hence if $v_1$, $\cdots$, $v_m$ spans $V$, it follows that $T$ is surjective.

(b) Note that $z_1v_1+\cdots+z_mv_m=0$ if and only if $(z_1,\cdots,z_m)=(0,\cdots,0)$ since $v_1$, $\cdots$, $v_m$ is linearly independent. Hence $\m{null}T=\{(0,\cdots,0)\}$, then $T$ is injective.

4. Show that $\{T\in\ca L(\R^5,\R^4):\dim \m{null} T >2\}$ is not a subspace of $L(\R^5,\R^4)$.

Solution: Let $e_1$, $\cdots$, $e_5$ be a basis of $\R^5$ and $f_1$, $f_2$, $f_3$, $f_4$ be a basis of $\R^4$. Define $S_1$ and $S_2$ by $S_1e_i=0,\quad S_1e_4=f_1,\quad S_1e_5=f_2,\quad \text{for~}i=1,2,3;$ $S_2e_i=0,\quad S_2e_3=f_3\quad S_2e_5=f_4,\quad \text{for~}i=1,2,4.$Then it is obvious that $S_1,S_2\in \{T\in\ca L(\R^5,\R^4):\dim \m{null} T >2\}$. However, $(S_1+S_2)e_1=0,\quad (S_1+S_2)e_2=0$and $(S_1+S_2)e_3=f_3,\quad (S_1+S_2)e_4=f_1,\quad (S_1+S_2)e_5=f_2+f_4.$Then you can check that $\dim \m{null} (S_1+S_2)=2$. Hence $\{T\in\ca L(\R^5,\R^4):\dim \m{null} T >2\}$ is not closed under addition, this implies it is not a subspace of $L(\R^5,\R^4)$.

5. Give an example of a linear map $T:\R^4\to\R^4$ such that $\m{range} T = \m{null} T.$Solution: Let $e_1$, $e_2$, $e_3$, $e_4$ be a basis of $\R^4$. Define $T\in\ca L(\R^4,\R^4)$ by $Te_1=e_3,Te_2=e_4,Te_3=Te_4=0.$Then $\mathrm{null} T=\mathrm{span}(e_3,e_4)$, and $\mathrm{range} T=\mathrm{span}(e_3,e_4)$. Hence $\m{range} T = \m{null} T$.

6. Prove that there does not exist a linear map $T:\R^5\to\R^5$ such that $\m{range} T = \m{null} T.$Solution: By 3.22, we know that $\dim \m{range} T +\dim \m{null} T=\dim(\R^5)=5.$If $\m{range} T = \m{null} T$, we will get that $\m{range} T = \m{null} T=2.5$. This is impossible since dimension is an integer.

7. Suppose $V$ and $W$ are finite-dimensional with $2\le \dim V \le \dim W$. Show that $\{T\in\ca L(V,W): T\text {~is not injective}\}$ is not a subspace of $\ca L(V,W)$.

Solution: Let $v_1$, $\cdots$, $v_n$ be a basis of $V$ and $w_1$, $\cdots$, $w_m$ be a basis of $W$, then we have $2\le n\le m$. Define $T_1, T_2\in\ca L(V,W)$ by $T_1v_1=0,T_1v_i=w_i,i=2,\cdots,n$and $T_2v_1=w_1,T_2v_2=0,T_2v_i=w_i,i=3,\cdots,n.$Then $T_1,T_2\in \{T\in\ca L(V,W): T\text {~is not injective}\}$. However, we have $(T_1+T_2)v_1=w_1,(T_1+T_2)v_2=w_2,(T_1+T_2)v_i=2w_i,i=3,\cdots,n.$Then by Problem 3 (b), it follows that $T_1+T_2$ is injective. Hence $\{T\in\ca L(V,W): T\text {~is not injective}\}$ is not closed under addition, which implies it is not a subspace of $\ca L(V,W)$.

8. Suppose $V$ and $W$ are finite-dimensional with $\dim V \ge \dim W\ge 2$. Show that $\{T\in\ca L(V,W): T\text {~is not surjective}\}$ is not a subspace of $\ca L(V,W)$.

Solution: Let $v_1$, $\cdots$, $v_n$ be a basis of $V$ and $w_1$, $\cdots$, $w_m$ be a basis of $W$, then we have $n\ge m\ge 2$. Define $T_1, T_2\in\ca L(V,W)$ by $T_1v_1=0,T_1v_i=w_i,T_1v_j=0,i=2,\cdots,m;j=m+1,\cdots,n$and $T_2v_1=w_1,T_2v_2=0,T_2v_i=w_i,T_2v_j=0,i=3,\cdots,m;j=m+1,\cdots,n.$Then $T_1,T_2\in \{T\in\ca L(V,W): T\text {~is not surjective}\}$. However, we have $(T_1+T_2)v_1=w_1,(T_1+T_2)v_2=w_2,(T_1+T_2)v_i=2w_i,i=3,\cdots,m;$Then by Problem 3 (a), it follows that $T_1+T_2$ is surjective. Hence $\{T\in\ca L(V,W): T\text {~is not surjective}\}$ is not closed under addition, which implies it is not a subspace of $\ca L(V,W)$.

9. Suppose $T\in\ca L(V,W)$ is injective and $v_1$, $\cdots$, $v_n$ is linearly independent in $V$. Prove that $Tv_1$, $\cdots$, $Tv_n$ is linearly independent in $W$.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 5.

10. Suppose $v_1$, $\cdots$, $v_n$ spans $V$ and $T\in\ca L(V,W)$. Prove that the list $Tv_1$, $\cdots$, $Tv_n$ spans $\m{range}T$.

Solution: Note that $v_1$, $\cdots$, $v_n$ spans $V$, any $v\in V$ can be written as a linear combination of $v_1$, $\cdots$, $v_n$. That is there are $a_1$, $\cdots$, $a_n\in\mb F$ such that $v=a_1v_1+\cdots+a_nv_n.$Since $T\in\ca L(V,W)$, it follows that $Tv=a_1Tv_1+\cdots+a_nT_n.$Hence $\m{range}T\subset\m{span}(Tv_1,\cdots,Tv_n)$. On the other hand $Tv_1$, $\cdots$, $Tv_n$ are contained in $\m{range}T$. By the definition of span, we conclude that $Tv_1$, $\cdots$, $Tv_n$ spans $\m{range}T$.

See a similar problem in Linear Algebra Done Right Solution Manual Chapter 3 Problem 7.

11. Suppose $S_1$, $\cdots$, $S_n$ are injective linear maps such that $S_1S_2\cdots S_n$ makes sense. Prove that $S_1S_2\cdots S_n$ is injective.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 6.

12. Suppose that $V$ is finite-dimensional and that $T\in\ca L(V,W)$. Prove that there exists a subspace $U$ of $V$ such that $U\cap \m{null}=\{0\}$ and $\m{range} T=\{Tu:u\in U\}$.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 8.

13. Suppose $T$ is a linear map from $\mb F^4$ to $\mb F^2$ such that $\m{null} T=\{(x_1,x_2, x_3, x_4)\in \mb F^4: x_1=5x_2~ \text{and} x_3=7x_4\}.$ Prove that $T$ is surjective.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 9.

14. Suppose $U$ is a 3-dimensional subspace of $\R^8$ and that $T$ is a linear map from $\R^8$ to $\R^5$ such that $\m{null} T = U$. Prove that $T$ is surjective.

Solution: By 3.22, we have $\dim\m{null} T+\dim\m{range}T=\dim(\R^8)=8.$Note that $\m{null} T = U$ and $\dim U=3$, it follows that $\dim\m{range}T=8-\dim\m{null} T=8-3=5=\dim(\R^5).$Therefore $T$ is surjective by Problem 1 of Exercises 2.C.

15. Prove that there does not exist a linear map from $\mb F^5$ to $\mb F^2$ whose null space equals $\{(x_1, x_2, x_3, x_4, x_5)\in\mb F^5:x_1=3x_2 \text{and} x_3=x_4=x_5\}.$Solution: Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 10.

16. Suppose there exists a linear map on $V$ whose null space and range are both finite-dimensional. Prove that $V$ is finite-dimensional.

Solution: Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 11.

17. Suppose $V$ and $W$ are both finite-dimensional. Prove that there exists an injective linear map from $V$ to $W$ if and only if $\dim V \le \dim W$.

Solution: By 3.22, it follows that for any injective $T\in\ca L(V,W)$, we have $\dim V=\dim \m{null}T+\dim\m{range}T=\dim\m{range}T\le\dim W.$Hence there exists an injective linear map from $V$ to $W$, then $\dim V \le \dim W$.

If $n=\dim V \le \dim W=m$, then let $v_1$, $\cdots$, $v_n$ and $w_1$, $\cdots$, $w_m$ be the bases of $V$ and $W$, respectively. Define $T\in\ca L(V,W)$ such that $Tv_i=w_i,\quad i =1,\cdots,n.$Here we use $n\le m$. Similar to Problem 3(b), we can show that $T$ is injective.

18. Suppose $V$ and $W$ are both finite-dimensional. Prove that there exists an surjective linear map from $V$ to $W$ if and only if $\dim V \ge \dim W$.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 12. It is similar to Problem 17.

19. Suppose $V$ and $W$ are finite-dimensional and that $U$ is a subspace of $V$. Prove that there exists $T\in\ca L(V,W)$ such that $\m{null} T = U$ if and only if $\dim U \ge \dim V – \dim W$.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 13.

20. Suppose $W$ is finite-dimensional and $T\in\ca L(V,W)$. Prove that $T$ is injective if and only if there exists $S\in\ca L(W,V)$ such that $ST$ is the identity map on $V$.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 14.

21. Suppose $W$ is finite-dimensional and $T\in\ca L(V,W)$. Prove that $T$ is surjective if and only if there exists $S\in\ca L(W,V)$ such that $TS$ is the identity map on $V$.

Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 15.

22. Suppose $U$ and $V$ are finite-dimensional vector spaces and $S\in\ca L(V,W)$ and $T\in\ca L(U,V)$. Prove that $\dim \m{null}ST \le \dim \m{null} S + \dim \m{null} T.$Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 16.

23. Suppose $U$ and $V$ are finite-dimensional vector spaces and $S\in\ca L(V,W)$ and $T\in\ca L(U,V)$. Prove that $\dim \m{range}ST \le \min\{\dim \m{range}S ,\dim \m{range}T\}.$Solution: It is obvious that $\m{range}ST\subset\m{range}S$, hence $\dim \m{range}ST \le \dim \m{range}S$. Let $u_1,\cdots,u_m$ be a basis of $\m{range}T$, then by Problem 10, we have $\m{range}ST=\m{span}(Su_1,\cdots,Su_m).$Hence $\dim \m{range}ST \le m=\dim \m{range}T$. Thus $\dim \m{range}ST \le \min\{\dim \m{range}S ,\dim \m{range}T\}.$

24. Suppose $W$ is finite-dimensional and $T_1,T_2\in\ca L(V,W)$. Prove that $\m{null} T_1 \subset \m{null} T_2$ if and only if there exists $S \in\ca L(W,W)$ such that $T_2=ST_1$.

Solution: If we assume $\m{null} T_1 \subset \m{null} T_2$. Let $u_1$, $\cdots$, $u_m$ be a basis of $\m{null} T_1$, then it can be extended to a basis $u_1,\cdots,u_m,v_1,\cdots,v_n$ of $V$. Then from the process of the proof of 3.22, we know that $T_1v_1,\cdots,T_1v_n$is linear independent. Hence we can extend it to a basis $T_1v_1,\cdots,T_1v_n,\nu_1,\cdots,\nu_l$ of $W$. Now define $S\in\ca L(W,W)$ such that $ST_1v_i=T_2v_i,\quad S\nu_j=0, \quad i=1,\cdots,n;j=1,\cdots,l.$Then $ST_1v_i=T_2v_i$ and $ST_1u_j=0=T_2u_j$ since $\m{null} T_1 \subset \m{null} T_2$, hence $ST_1=T_2$ by uniqueness in 3.5.

If there exists $S \in\ca L(W,W)$ such that $T_2=ST_1$, then for any $\mu\in\m{null} T_1$, we have $T_2\mu=ST_1\mu=S0=0.$Hence $\mu\in \m{null} T_2$, it follows that $\m{null} T_1 \subset \m{null} T_2$.

25. Suppose $W$ is finite-dimensional and $T_1,T_2\in\ca L(V,W)$. Prove that $\m{range} T_1 \subset \m{range} T_2$ if and only if there exists $S \in\ca L(V,V)$ such that $T_1=T_2S$.

Solution: If we assume $\m{range} T_1 \subset \m{range} T_2$. Let $u_1$, $\cdots$, $u_m$ be a basis of $V$, then we can find $v_1$, $\cdots$, $v_m\in V$ such that $T_1u_i=T_2v_i$ for $i=1,\cdots,m$ since $\m{range} T_1 \subset \m{range} T_2$. Define $S\in\ca L(V,V)$ by $Su_i=v_i$, then we have $T_1u_i=T_2v_i=T_2Su_i,\quad i=1,\cdots,m,$hence $T_1=T_2S$ by uniqueness in 3.5.

If there exists $S \in\ca L(V,V)$ such that $T_1=T_2S$, then for any $\mu\in V$, we have $T_1\mu=T_2S\mu\in \m{range} T_2.$Hence $\m{range} T_1 \subset \m{range} T_2$.

26. Suppose $D \in\ca L(\ca P(\R),\ca P(\R))$ is such that $\deg Dp=\deg p-1$ for every nonconstant polynomial $p\in \ca P(\R)$. Prove that $D$ is surjective. [The notation $D$ is used above to remind you of the differentiation map that sends a polynomial $p$ to $p’$. Without knowing the formula for the derivative of a polynomial (except that it reduces the degree by 1), you can use the exercise above to show that for every polynomial $q\in\ca P(\R)$, there exists a polynomial $p\in\ca P(\R)$ such that $p’=q$.]

Solution: Consider Problem 10 of Exercise 2C. Note that we have $\deg Dx^n=n-1,$it follows that for any $j\in\mb N$, there is a polynomial $Dx^{j+1}$ with degree $j$. Note that $\m{range}D$ is a subspace, hence $\m{span}(Dx,Dx^2,\cdots)\subset \m{range}D.$Moreover, by Problem 10 of Exercise 2C, we have $\m{span}(Dx,Dx^2,Dx^3,\cdots)=\m{span}(1,x,x^2,\cdots).$Hence $\m{span}(1,x,\cdots)\subset \m{range}D$, namely $\m{range}D=\ca P(\R)$.

27. Suppose $p\in \ca P(\R)$. Prove that there exists a polynomial $q\in \ca P(\R)$ such that $5q”+3q’=p$. [This exercise can be done without linear algebra, but it’s more fun to do it using linear algebra.]

Solution: Denote the differentiation map by $D$, then $5D^2+3D\in\ca L(\ca P(\R),\ca P(\R))$ is of the type in Problem 26. Hence $5D^2+3D$ is surjective, thus there exists $q\in \ca P(\R)$ such that $(5D^2+3D)q=p$. Note that $(5D^2+3D)q=5q”+3q’$, the proof completes.

28. Suppose $T \in\ca L(V,W)$ and $w_1$, $\cdots$, $w_m$ is a basis of range $T$. Prove that there exist $\vp_1$, $\cdots$, $\vp_m\in$ $\ca L(V,\mb F)$ such that $Tv=\vp_1(v)w_1+\cdots+\vp_m(v)w_m$ for every $v\in V$.

Solution: For any $v\in V$, there is a uniquely linear combination $Tv=a_1w_1+\cdots+a_mw_m,$where $a_1,\cdots,a_m\in\mb F$, as $w_1$, $\cdots$, $w_m$ is a basis of range $T$. Denote $a_i$ by $\vp_i(v)$. Now we check that $\vp_i\in \ca L(V,\mb F)$, $i=1,\cdots,m$. For $u,v\in V$, we have $Tu=\vp_1(u)w_1+\cdots+\vp_m(u)w_m$ and $Tv=\vp_1(v)w_1+\cdots+\vp_m(v)w_m.$Similarly, we also have $T(u+v)=\vp_1(u+v)w_1+\cdots+\vp_m(u+v)w_m.$Since $T\in\ca L(V,W)$, it follows that \begin{align*} &\vp_1(u+v)w_1+\cdots+\vp_m(u+v)w_m\\=&T(u+v)=Tu+Tv\\=&\vp_1(u)w_1+\cdots+\vp_m(u)w_m+\vp_1(v)w_1+\cdots+\vp_m(v)w_m\\ =&(\vp_1(u)+\vp_1(v))w_1+\cdots+(\vp_m(u)+\vp_m(v))w_m. \end{align*} As $w_1$, $\cdots$, $w_m$ is a basis of range $T$, it follows that $\vp_i(u+v)=\vp_i(u)+\vp_i(v),i=1,\cdots,m.$Similarly, by consider $T(\lambda u)=\lambda Tu$ for $\lambda\in \mb F$, it follows that $\vp_i(\lambda u)=\lambda\vp_i(u),i=1,\cdots,m.$Hence $\vp_i\in\ca L(V,\mb F)$.

29. Suppose $\vp\in\ca L(V,\mb F)$. Suppose $u\in V$ is not in null $\vp$. Prove that $V=\m{null}\vp\oplus\{au:a\in\mb F\}.$Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 4.

30. Suppose $\vp_1$ and $\vp_2$ are linear maps from $V$ to $\mb F$ that have the same null space. Show that there exists a constant $c\in \mb F$ such that $\vp_1= c\vp_2$.

Solution: If $\m{null}\vp_1=\m{null}\vp_2=V$, then $\vp_1=\vp_2=0$.

If $\m{null}\vp_1=\m{null}\vp_2\ne V$, then there is a $u\in V$ is not in null $\vp_2$, namely $\vp_2(u)\ne0$. By problem 29, we have$V=\m{null}\vp_1\oplus\{au:a\in\mb F\}.$Hence for any $v\in V$, $v$ can be written as $w+a_vu$ where $w\in \m{null}\vp_1$. Then $\vp_1(w)=\vp_2(w)=0$, we have \begin{align*} \frac{\vp_1(u)}{\vp_2(u)}\vp_2(v)=&\frac{\vp_1(u)}{\vp_2(u)}\vp_2(w+a_vu)=\frac{\vp_1(u)}{\vp_2(u)}a_v\vp_2(u)\\=&a_v\vp_1(u)=\vp_1(w+a_vu)\\=&\vp_1(v), \end{align*}i.e. $\vp_1=\dfrac{\vp_1(u)}{\vp_2(u)}\vp_2$. Let $c=\dfrac{\vp_1(u)}{\vp_2(u)}$, we complete the proof.

31. Give an example of two linear maps $T_1$ and $T_2$ from $\R^5$ to $\R^2$ that have the same null space but are such that $T_1$ is not a scalar multiple of $T_2$.

Solution: Let $e_1$, $e_2$, $e_3$, $e_4$, $e_5$ and $f_1$, $f_2$ be a basis of $\R^5$ and $\R^2$, respectively. Define $T_1\in\ca L(\R^5,\R^2)$ by $T_1e_1=f_1,T_1e_2=f_2,T_1e_3=T_1e_4=T_1e_5=0.$Define $T_2\in\ca L(\R^5,\R^2)$ by $T_2e_1=f_1,T_2e_2=2f_2,T_2e_3=T_2e_4=T_2e_5=0.$Then $\m{null}T_1=\m{null}T_2=\m{span}(e_3,e_4,e_5)$and $T_1$ is not a scalar multiple of $T_2$. Otherwise, if $T_1=cT_2$, then $f_1=T_1e_1=cT_2e_1=cf_1.$We get $c=1$. However, from $f_2=T_1e_2=cT_2e_2=2cf_2,$we get $c=1/2$. ## About Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
This entry was posted in Chapter 3 and tagged .