Chapter 6 Exercise B

1. Solution:

(a) One can easily check that each of the four vectors has norm $\sin^2 \theta + \cos^2 \theta$, which equals $1$. Moreover, we have
$$ \begin{aligned} \langle (\cos\theta, \sin\theta), (-\sin\theta, \cos\theta) \rangle &= -\cos\theta \sin\theta + \sin\theta \cos\theta = 0\\ \langle (\cos\theta, \sin\theta), (\sin\theta, -\cos\theta) \rangle &= \cos\theta \sin\theta – \sin\theta \cos\theta = 0, \end{aligned} $$ which shows that they are orthogonal.

(b) Clearly, for any $v$ and $u$ in $\mathbb{R}^2$ with $||v|| = ||u|| = 1$, we can write $v = (\cos \theta, \sin \theta)$ and $v = (\cos \alpha, \sin \alpha)$ for some angles $\theta$ and $\alpha$. If $v, u$ is an orthonormal basis, then we must have
$$ 0 = \langle v, u \rangle = \langle (\cos \theta, \sin \theta), (\cos \alpha, \sin \alpha) \rangle = \cos\theta \cos\alpha + \sin\theta \sin\alpha = \cos(\theta – \alpha). $$ One solution is to take choose $\theta$ and $\alpha$ such that $\theta – \alpha = \frac{\pi}{2}$. Then
$$ \begin{aligned} (\cos \alpha, \sin \alpha) &= (\cos(\theta + \frac{\pi}{2}), \sin(\theta + \frac{\pi}{2}))\\ &= (\cos\theta \cos\frac{\pi}{2} – \sin\theta\sin\frac{\pi}{2}, \sin\theta \cos\frac{\pi}{2} + \sin\frac{\pi}{2} \cos\theta)\\ &= (-\sin\theta, \cos\theta).\\ \end{aligned} $$ Which shows that $v, u$ is of the first form given in part (a).

2. Solution: If $v\in \m{span}(e_1,\cdots,e_m)$, then $e_1$, $\cdots$, $e_m$ is an orthonormal basis of $\m{span}(e_1,\cdots,e_m)$ by 6.26. By 6.30, it follows that\[\|v\|^2=|\langle v,e_1\rangle|^2+\cdots+|\langle v,e_m\rangle|^2.\] If $\|v\|^2=|\langle v,e_1\rangle|^2+\cdots+|\langle v,e_m\rangle|^2$, we denote \[ \xi=v-(\langle v,e_1\rangle e_1 +\cdots+\langle v,e_m\rangle e_m). \]It is easily seen that \[ \langle \xi,e_i\rangle=\langle v,e_i\rangle-\langle v,e_i\rangle=0 \]for $i=1,\cdots,m$. This implies\[\langle \xi,e_1\rangle e_1 +\cdots+\langle v,e_m\rangle e_m\rangle=0.\]By 6.13, we have \begin{align*} \|v\|^2=&\|\xi\|^2+\|\langle v,e_1\rangle e_1 +\cdots+\langle v,e_m\rangle e_m\|^2\\ =&\|\xi\|^2+|\langle v,e_1\rangle|^2+\cdots+|\langle v,e_m\rangle|^2.\end{align*} It follows that $\|\xi\|^2=0$, hence $\xi=0$. Thus $v=\langle v,e_1\rangle e_1 +\cdots+\langle v,e_m\rangle e_m$, namely $v\in \m{span}(e_1,\cdots,e_m)$.

3. Solution: Applying the Gram-Schmidt Procedure to the given basis, we get the following basis
$$ (1, 0, 0),\:\frac{1}{\sqrt{2}}(0, 1, 1),\:\frac{1}{\sqrt{2}}(0, -1, 1). $$ As in the proof of 6.37, we see that the matrix of $T$ with respect to this basis is upper triangular.

4. Solution: See Linear Algebra Done Right Solution Manual Chapter 6 Problem 9.

5. Solution: Applying the Gram-Schmidt Procedure, we get the following basis
$$ 1, \: 2\sqrt{3}(x – \frac{1}{2}), \: 6\sqrt{5}(x^2 – x + \frac{1}{6}). $$

6. Solution: Let $D$ denote the differential operator. Note that $D$ is already upper-triangular with respect to the standard basis of $\mathcal{P}_2{\mathbb{R}}$. Therefore, by the same reasoning used in the proof of 6.37, $\mathcal{M}(D)$ is upper-triangular with respect to the basis found in Exercise 5.

7. Solution:Defining $\varphi(p) = p(\frac{1}{2})$ and $\langle p, q \rangle = \int_{0}^{1} p(x)q(x)\ dx$ and using the formula from 6.43 together with the basis found in Exercise 5, we find that
$$ q(x) = -15x^2 + 15x – \frac{3}{2}. $$

8. Solution: Using the orthonormal basis found in Exercise 5 and the formula in 6.43, we get $q(x) = \dfrac{-24}{\pi^2}\left(x – \dfrac{1}{2}\right)$.

9. Solution: Suppose $v_1, \dots, v_m$ is a lienarly dependent list in $V$. Let $k$ be the smallest integer such that $v_k \in \operatorname{span}(v_1, \dots, v_{k-1})$. Then $v_1, \dots, v_{k-1}$ is linearly independent and we can apply the Gram-Schmidt Procedure to produce an orthonormal list $e_1, \dots, e_{k-1}$ whose span is the same. Therefore $v_k \in \operatorname{span}(e_1, \dots, e_{k-1})$ and, by 6.30,
$$ v_k = \langle v_k, e_1 \rangle e_1 + \dots + \langle v_k, e_{k-1} \rangle e_{k-1}. $$ But the right hand side is exactly what we subtract from $v_k$ when calculating $e_k$, hence the Gram-Schmidt Procedure cannot continue because we can’t divide by $0$. If, however, you discard $v_k$ (and every other vector to which happens the same thing), you end up producing an orthonormal basis whose span equals $\operatorname{span}(v_1, \dots, v_m)$.

10. Solution: Just apply the Gram-Schmidt Procedure once on $v_1, \dots, v_m$ to get the orthonormal an $e_1, \dots, e_m$. Note that, if we switch the order of this list without relabeling the vectors, we still have $\operatorname{span}(v_1, \dots, v_j) = \operatorname{span}(e_1, \dots, e_j)$ for all $j \in \{1, \dots, m\}$, because the vectors themselves remain the same. There $2^m$ such permutations.

11. Solution: Let $w \in V$. Define $\varphi(v) = \langle v, w \rangle_1$ and $\psi(v) = \langle v, w \rangle_2$. Since $\varphi(v) = 0$ if and only if $\psi(v) = 0$, it follows that $\operatorname{null} \varphi =\operatorname{null} \psi$. By Theorem 1 in Chapter 3 notes we have
$$ \operatorname{span}(\varphi) = (\operatorname{null} \varphi)^0 = (\operatorname{null} \psi)^0 = \operatorname{span}(\psi). $$ Thus $\varphi = c\psi$ for some $c \in \mathbb{F}$. Hence, for each fixed $w$ we have $\langle v, w \rangle_1 = c\langle v, w \rangle_2$ for every $v \in V$. Chosing $v = w$ now implies that $c$ is real and positive. Fix $w_1, w_2 \in V$ and let $c_1, c_2 \in \mathbb{F}$ such that
$$ \begin{aligned} \langle v, w_1 \rangle_1 &= c_1 \langle v, w_1 \rangle_2\\ \langle v, w_2 \rangle_1 &= c_2 \langle v, w_2 \rangle_2.\\ \end{aligned} $$ Pluging $v = w_2$ in the first equation and $v = w_1$ in the second yields
$$ \begin{aligned} \langle w_2, w_1 \rangle_1 &= c_1 \langle w_2, w_1 \rangle_2\\ \langle w_1, w_2 \rangle_1 &= c_2 \langle w_1, w_2 \rangle_2.\\ \end{aligned} $$ Then
$$ c_1 \langle w_2, w_1 \rangle_2 = \langle w_2, w_1 \rangle_1 = \overline{\langle w_1, w_2 \rangle_1} = \overline{c_2 \langle w_1, w_2 \rangle_2} = \bar{c_2} \langle w_2, w_1 \rangle_2. $$ Hence $c_1 = \bar{c_2}$. Because both are real, it follows that $c_1 = c_2$. Therefore, the constant is the same for all $v, w \in V$.

14. Solution: Since $e_1,\cdots,e_n$ is an orthonormal basis of $V$, we have $\dim\,V=n$. To show that $v_1,\cdots,v_n$ is a basis of $V$, it suffices to show that $v_1,\cdots,v_n$ is linearly independent. We prove it by contradiction.
Suppose $v_1,\cdots,v_n$ is linearly dependent, then there exist $a_1,\cdots,a_n\in\mathbb F$ such that $a_k\ne 0$ for some $k\in\{1,\cdots,n\}$ and \[\sum_{i=1}^na_iv_i=0.\]On one hand, by 6.25, we have $$\Big\|\sum_{i=1}^na_i(e_i-v_i)\Big\|^2=\Big\|\sum_{i=1}^na_ie_i\Big\|^2=\sum_{i=1}^n|a_i|^2.$$On the other hand, we also have\begin{align*}\Big\|\sum_{i=1}^na_i(e_i-v_i)\Big\|^2=&\,\Big\langle \sum_{i=1}^n a_i(e_i-v_i),\sum_{j=1}^n a_j(e_j-v_j)\Big\rangle\\ = &\,\sum_{i=1}^n\sum_{j=1}^n\Big\langle a_i(e_i-v_i),a_j(e_j-v_j)\Big\rangle\\ \leqslant &\, \left|\sum_{i=1}^n\sum_{j=1}^n\Big\langle a_i(e_i-v_i),a_j(e_j-v_j)\Big\rangle\right|\\ \leqslant &\, \sum_{i=1}^n\sum_{j=1}^n\left|\Big\langle a_i(e_i-v_i),a_j(e_j-v_j)\Big\rangle\right| \\ \text{by 6.15}\quad \leqslant &\,\sum_{i=1}^n\sum_{j=1}^n\|a_i(e_i-v_i)\|\|a_j(e_j-v_j)\|\\ = &\,\sum_{i=1}^n\sum_{j=1}^n|a_i||a_j|\|e_i-v_i\|\|e_j-v_j\|\\ \text{by assumption and }a_k\ne 0 \quad <&\,\sum_{i=1}^n\sum_{j=1}^n\frac{1}{n}|a_i||a_j|=\frac{1}{n}\Big(\sum_{i=1}^n|a_i|\Big)^2\\ \text{by Problem 6.A.12}\quad\leqslant &\sum_{i=1}^n|a_i|^2.\end{align*}Hence we get $$\sum_{i=1}^n|a_i|^2<\,\sum_{i=1}^n|a_i|^2,$$which is impossible, hence completing the proof.

15. Solution: Suppose there exists $g$ such that $\vp(f)=\langle f,g\rangle$ for all $f\in C_{\R}[-1,1]$. We would like to show a contradiction.
For any positive integer $n$ and integer $-n\leqslant i\leqslant n-1$, define\[f_{n,i}(x)=\begin{cases}4n^2(x-i/n),\quad &\text{if }x\in [i/n,i/n+1/(2n)]\\ 4n^2((i+1)/n-x),\quad &\text{if }x\in [i/n+1/(2n),(i+1)/n]\\ 0,\quad &\text{otherwise },\end{cases}\]then $f_{n,i}(x)\in C_{\R}[-1,1]$ and $f_{n,i}(0)=0$.
Given any $\epsilon>0$, since $g\in C_{\R}[-1,1]$, by the fact that a continuous function on a closed interval is uniformally continuous, there exists $N$ such that for any $n\geqslant N$, we have \begin{equation}\label{6B151}|g(x)-g(y)|\leqslant \epsilon\end{equation} if $|x-y|\leqslant 1/n$.
Note that \begin{equation}\label{6B152}\int_{-1}^{1}f_{n,i}(x)dx=\int_{i/n}^{(i+1)/n}f_{n,i}(x)dx=1,\end{equation} for any $y\in [i/n,(i+1)/n]$ we have \begin{align*}&\left|g\left(y\right)-\int_{-1}^1 f_{n,i}(x)g(x)dx\right|\\=& \left|\int_{i/n}^{(i+1)/n}f_{n,i}(x)\left(g\left(y\right)-g(x)\right)dx\right|\\ \leqslant& \int_{i/n}^{(i+1)/n}f_{n,i}(x)\left|g\left(y\right)-g(x)\right|dx \\ \text{by \eqref{6B151} and \eqref{6B152}}\quad \leqslant& \int_{i/n}^{(i+1)/n}f_{n,i}(x)\epsilon dx=\epsilon.\end{align*} On the other hand, we also have$$0=f_{n,i}(0)=\vp(f_{n,i})=\langle f_{n,i},g\rangle=\int_{-1}^1 f_{n,i}(x)g(x)dx.$$ Hence we have $$|g(y)|=|g(y)-f_{n,i}(0)|\leqslant \epsilon$$ for any $y\in [i/n,(i+1)/n]$. Thus $|g(x)|\leqslant \epsilon $ by taking all $-n\leqslant i\leqslant n-1$ with $n\geqslant N$.
Since $\epsilon$ is chosen arbitrarily, we have $g(x)\equiv 0$. Hence $\vp f\equiv 0$ for all $f\in C_{\R}[-1,1]$, which is impossible. Therefore the proof is complete.

17. Solution:

(a) For additivity, suppose $u_1, u_2 \in V$. Then, for $v \in V$, we have
$$ (\Phi(u_1 + u_2))(v) = \langle v, u_1 + u_2 \rangle = \langle v, u_1 \rangle + \langle v, u_2 \rangle = (\Phi u_1)(v) + (\Phi u_2)(v). $$ For homogeneity, suppose $u \in V$ and $c \in \mathbb{R}$. Then, for $v \in V$, we have
$$ (\Phi(cu))(v) = \langle v, cu \rangle = c\langle v, u \rangle = c(\Phi u)(v). $$ (b) If $\mathbb{F} = \mathbb{C}$, then the homogeneity property of linear maps is not satisfied, because we would have $(\Phi(cu))(v) = \bar{c}(\Phi u)(v)$, but $c = \bar{c}$ if and only if $c$ is a real number.

(c) This is the same as the second part in the proof of 6.42. Suppose there are $u_1$ and $u_2$ in $V$ such that $\Psi u_1 = \Psi u_2$. Then
$$ 0 = (\Psi u_1 – \Psi u_2)(v) = (\Psi(u_1 – u_2))(v) = \langle v, u_1 – u_2 \rangle $$ for all $v \in V$. Choosing $v = u_1 – u_2$ shows that $u_1 – u_2 = 0$ and thus $u_1 = u_2$.

(d) From (c), we get that $\dim\mathrm{null}~ \Phi = 0$. Thus, from 3.22, we have $$ \operatorname{dim} V = \operatorname{dim} \operatorname{null} \Phi + \operatorname{dim} \operatorname{range} \Phi = \operatorname{dim} \operatorname{range} \Phi. $$ However, $\operatorname{dim} V = \operatorname{dim} V’$. This shows that $\Phi$ also surjective. Hence $\Phi$ is invertible, that is, an isomorphism from $V$ to $V’$.

About Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
This entry was posted in Chapter 6 and tagged .