Chapter 6 Exercise C


3. Solution: By 6.31, we have \[ \m{span}(e_1,\cdots e_m)=\m{span}(u_1,\cdots,u_m)=U. \]Note that $e_1,\cdots e_m$ is an orthonormal list, it follows that $e_1,\cdots e_m$, is an orthonormal basis of $U$. By 6.47, we have $V=U\oplus U^{\perp}$. As $e_1,\cdots e_m,f_1,\cdots,f_n$ is an orthonormal list, it follows that \[\m{span}(f_1,\cdots,f_n)\subset U^{\perp}\]by definition. Oh the other hand, $V=U\oplus U^{\perp}$ implies \[\dim V=\dim U+\dim U^{\perp}\Longrightarrow m+n=m+\dim U^{\perp}.\]This means $\dim U^{\perp}=n$. Note that \[\dim \m{span}(f_1,\cdots,f_n)=n\]and\[\m{span}(f_1,\cdots,f_n)\subset U^{\perp},\]we conclude\[\m{span}(f_1,\cdots,f_n)= U^{\perp}.\]Thus $f_1,\cdots,f_n$ is an orthonormal basis of $U^{\perp}$.


5. Solution: By 6.47, we have $V=U\oplus U^{\perp}$. For any $v\in V$, $v$ can be written as $v=u+w$, where $u\in U$ and $w\in U^{\perp}$. By the definition of orthogonal projection, we have $P_U(v)=u$. By 6.51, we have $(U^{\perp})^{\perp}=U$, hence $P_{U^{\perp}}(v)=w$ as $w\in U^{\perp}$ and $v\in U=(U^{\perp})^{\perp}$. Hence \[ P_{U^{\perp}}(v)=w=(u+w)-u=I(v)-P_U(v)=(I-P_U)(v). \]As $v$ is chosen arbitrarily, it follows that $P_{U^{\perp}}=I-P_{U}$.


6. Solution: Suppose $P_UP_W=0$. For any $w\in W$, we have $P_UP_Ww=P_Uw=0$. It follows that $w\in U^\perp$ by Proposition 6.55 (c). Therefore $\langle w,u\rangle$ for all $u\in U$. Note that $w\in W$ is chosen arbitrarily, one has $\langle u,w\rangle =0$ for all $u\in U$ and all $w\in W$.

Conversely, if $\langle u,w\rangle =0$ for all $u\in U$ and all $w\in W$, then $W\subset U^\perp$. Now again by Proposition 6.55 (c), $P_UW=0$, therefore $P_UP_W=0$ since for all $x\in V$ we have $P_Wx\in W$.


8. Solution: By Exercise 5B.4, we have \[V=\m{null}P\oplus\m{range}P.\]Hence for any $u\in \m{null}P$ and $w\in \m{range}P$. By assumption, we have \[ \|w\|=\|P(\lambda u+ w)\|\le\|\lambda u+w\| \]for any $\lambda\in\mb F$. By Exercise 6A.6, it follows that $\langle u,w\rangle=0$. As $u,w$ are chosen arbitrarily, we deduce that $\m{null}P\perp\m{range}P$. Now we can choose $U=\m{null}P$ and it is obvious that $P=P_U$ now.

Solution: See Linear Algebra Done Right Solution Manual Chapter 6 Problem 18.


9. Solution: If $U$ is invariant under $T$. Then for any $v\in V$, we can express it as $v=u+w$, where $u\in U$ and $w\in U^\perp$. Since $U$ is invariant under $T$, it follows that $Tu\in U$. By definition of orthogonal projection, we have \[ P_UTP_U(v)=P_UT(u)=T(u) \]and $TP_U(v)=Tu$. Hence $P_UTP_U(v)=TP_U(v)$ for any $v\in V$, i.e. $P_UTP_U=TP_U$.

Suppose $P_UTP_U=TP_U$, then for any $u\in U$, we have $P_U(u)=u$. Hence \[P_UTP_U(u)=P_U(Tu)\]and $TP_U(u)=Tu$. That implies $P_U(Tu)=Tu$, hence $Tu\in U$ by 6.55 (d). Therefore $U$ is invariant under $T$.

Solution: See Linear Algebra Done Right Solution Manual Chapter 6 Problem 19.


10. Solution: See Linear Algebra Done Right Solution Manual Chapter 6 Problem 20.


11. Solution: See Linear Algebra Done Right Solution Manual Chapter 6 Problem 21.


12. Solution: See Linear Algebra Done Right Solution Manual Chapter 6 Problem 22.


13. Solution: See Linear Algebra Done Right Solution Manual Chapter 6 Problem 23.


14. Solution: (a) Let $\vp\in U^{\perp}$, by continuity it suffices to show that $\vp(x)=0$ for all $x\in (-1,0)\cup (0,1)$. Suppose $\vp(x_0)=\xi\ne 0$ for some $x_0\in (-1,0)\cup (0,1)$. Then there exist a $\delta>0$ such that $(x_0-\delta,x_0+\delta)\subset (-1,0)\cup (0,1)$ and $\vp(x)\ge \xi/2$ for all $x\in [x_0-\delta,x_0+\delta]$. Define $f\in C_{\R}[-1,1]$ by \[ f(x)=\left\{ \begin{array}{ll} 0, & \hbox{$x\in[-1,x_0-\delta]\cup [x_0+\delta,1]$;} \\ (x-x_0+\delta)/\delta, & \hbox{$x\in [x_0-\delta,x_0]$;} \\ (-x+x_0+\delta)/\delta, & \hbox{$x\in [x_0,x_0+\delta]$.} \end{array} \right. \]Then $f\in U$ and $f(x)\ge 1/2$ for $x\in [x_0-\delta/2,x_0+\delta/2]$. Hence \[ \langle f,\vp\rangle =\int_{-1}^1 f(x)\vp(x)dx\ge \int_{x_0-\delta/2}^{x_0+\delta/2} f(x)\vp(x)dx\ge \delta\xi/4>0. \]Hence we get a contradiction, thus completing the proof.

(b) Use $U$ as a counterexample.


About Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
This entry was posted in Chapter 6 and tagged .