If you find any mistakes, please make a comment! Thank you.

Sym(4) acts on a set of polynomials by permuting the variables


Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 2.2 Exercise 2.2.12

Let $R$ be the set of all polynomials with integers coefficients in the independent variables $x_1, x_2, x_3, x_4$; i.e., elements of $R$ are formal sums $$p(x_1,x_2,x_3,x_4) = \sum_{i \in I} a_i \prod_{j=1}^4 x_j^{r_{i,j}}$$ for some finite set $I$, integers $a_i$, and nonnegative integers $r_{i,j}$.

Each $\sigma \in S_4$ permutes the$ x_i$ by $\sigma \cdot x_i = x_{\sigma(i)}$. We extend this action to a mapping $R \rightarrow R$ by $$\sigma \cdot p(x_1,x_2,x_3,x_4) = p(x_{\sigma(1)},x_{\sigma(2)},x_{\sigma(3)},x_{\sigma(4)}).$$ That is, $\sigma$ permutes the indices of the variables.

(1) Let $$p = p(x_1,x_2,x_3,x_4) = 12 x_1^5 x_2^7 x_4 – 18 x_2^3 x_3 + 11 x_1^6 x_2 x_3^3 x_4^{23},$$ and let $\sigma = (1\ 2\ 3\ 4)$ and $\tau = (1\ 2\ 3)$. Compute $\sigma \cdot p$, $\tau \cdot (\sigma \cdot p)$, $(\tau \circ \sigma) \cdot p$, and $(\sigma \circ \tau) \cdot p$.
(2) Prove that this set of mappings gives a group action of $S_4$ on $R$.
(3) Exhibit all permutations in $S_4$ that stabilize $x_4$ and prove that they form a subgroup isomorphic to $S_3$.
(4) Exhibit all permutations in $S_4$ that stabilize the element $x_1 + x_2$ and prove that they form an abelian group of order 4.
(5) Exhibit all permutations in $S_4$ that stabilize the element $x_1x_2 + x_3x_4$ and prove that they form a subgroup isomorphic to $D_8$.
(6) Show that the permutations in $S_4$ that stabilize the element $(x_1 + x_2)(x_3 + x_4)$ are exactly those found in the previous part.


Solution:(1)\begin{align*} &\ \sigma \cdot p\\
=&\ 12 x_2^5 x_3^7 x_1 – 18 x_3^3 x_4 + 11 x_2^6 x_3 x_4^3 x_1^{23}\\
=&\ 12 x_1 x_2^5 x_3^7 – 18 x_3^3 x_4 + 11 x_1^{23} x_2^6 x_3 x_4^3\end{align*}\begin{align*} &\ \tau \cdot (\sigma \cdot p)\\
=&\ \tau \cdot 12 x_1 x_2^5 x_3^7 – 18 x_3^3 x_4 + 11 x_1^{23} x_2^6 x_3 x_4^3\\
=&\ 12 x_2 x_3^5 x_1^7 – 18 x_1^3 x_4 + 11 x_2^{23} x_3^6 x_1 x_4^3\\
=&\ 12 x_1^7 x_2 x_3^5 – 18 x_1^3 x_4 + 11 x_1 x_2^{23} x_3^6 x_4^3\end{align*} Note that $\tau \circ \sigma = (1\ 3\ 4\ 2)$. Then
\begin{align*}&\ (\tau \circ \sigma) \cdot p\\
=&\ 12 x_3^5 x_1^7 x_2 – 18 x_1^3 x_4 + 11 x_3^6 x_1 x_4^3 x_2^{23}\\
=&\ 12 x_1^7 x_2 x_3^5 – 18 x_1^3 x_4 + 11 x_1 x_2^{23} x_3^6 x_4^3\end{align*} Note that $\sigma \circ \tau = (1\ 3\ 2\ 4)$. Then
\begin{align*}&\ (\sigma \circ \tau) \cdot p\\
=&\ 12 x_4^5 x_2^7 x_3 – 18 x_2^3 x_1 + 11 x_4^6 x_2 x_1^3 x_3^{23}\\
=&\ 12 x_2^7 x_3 x_4^5 – 18 x_1 x_2^3 + 11 x_1^3 x_2 x_3^{23} x_4^6\end{align*} (2) Let $p = \sum_{i \in I} a_i \prod_{j=1}^4 x_j^{r_{i,j}}$. We have \begin{align*}1 \cdot p =&\ 1 \cdot \sum_{i \in I} a_i \prod_{j=1}^4 x_j^{r_{i,j}} = \sum_{i \in I} a_i \prod_{j=1}^4 x_{\mathsf{id}(j)}^{r_{i,j}} \\=&\ \sum_{i \in I} a_i \prod_{j=1}^4 x_j^{r_{i,j}} = p.\end{align*} Now let $\sigma$, $\tau \in S_4$. Then \begin{align*}\sigma \cdot (\tau \cdot p) =&\ \sigma \cdot (\tau \cdot \sum_{i \in I} a_i \prod_{j=1}^4 x_j^{r_{i,j}}) = \sigma \cdot \sum_{i \in I} a_i \prod_{j=1}^4 x_{\tau{j}}^{r_{i,j}} \\=&\ \sum_{i \in I} a_i \prod_{j=1}^4 x_{\sigma(\tau(j))}^{r_{i,j}} = \sum_{i \in I} a_i \prod_{j=1}^4 x_{(\sigma \circ \tau)(j)}^{r_{i,j}}\\ =&\ (\sigma \circ \tau) \cdot \sum_{i \in I} a_i \prod_{j=1}^4 x_j^{r_{i,j}}.\end{align*} Thus we have a group action of $S_4$ on $R$.

(3) The permutations that stabilize $x_4$ are precisely those permutations that fix 4; i.e., $$\{ 1, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2) \}.$$ Clearly then this stabilizer is isomorphic to $S_3$.

(4) Any permutation which stabilizes $x_1 + x_2$ must either fix or swap 1 and 2; how it acts on 3 and 4 doesn’t matter. There are 4 such permutations: $A = \{ 1, (1\ 2), (3\ 4), (1\ 2)(3\ 4) \}$. We can fill in a multiplication table for this subset of $S_4$:

1 (1 2) (3 4) (1 2)(3 4)
1 1 (1 2) (3 4) (1 2)(3 4)
(1 2) (1 2) 1 (1 2)(3 4) (3 4)
(3 4) (3 4) (1 2)(3 4) 1 (1 2)
(1 2)(3 4) (1 2)(3 4) (3 4) (1 2) 1

We can see from the table that $A$ is closed under multiplication and inversion, so it is a subgroup of $S_4$ of order 4. Moreover, we know from a previous exercise that because the multiplication table is symmetric, $A$ is abelian.

(5) Any permutation which stabilizes $x_1 x_2 + x_3 x_4$ must (independently) (1) swap or fix 1 and 2, (2) swap or fix 3 and 4, and (3) swap or fix the indices of the two terms. This gives $2^3 = 8$ permutations as follows: $$A = \{ 1, (1\ 2), (3\ 4), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 3\ 2\ 4), (1\ 4\ 2\ 3) \}.$$ Now let $S = \{ r, s \}$ and definea mapping $\overline{\varphi} : S \rightarrow A$ by $\overline{\varphi})(r) = (1\ 3\ 2\ 4)$ and $\overline{\varphi}(s) = (1\ 2)$. It is easy to see that $\overline{\varphi}(r)^4 = \overline{\varphi}(s)^2 = 1$, that $\overline{\varphi}(r) \overline{\varphi}(s) = \overline{\varphi}(s) \overline{\varphi}(r)^{-1}$, that $\overline{\varphi}(s) \notin \langle \overline{\varphi}(r) \rangle$, and that $|\overline{\varphi}(r)| = 4$. By a lemma to a previous problem, then, $\overline{\varphi}$ extends to an injective group homomorphism $\varphi : D_8 \rightarrow A$. Since $|D_8| = |A|$, $\varphi$ is an isomorphism.

(6) As before, we can see that any permutation which stabilizes $(x_1 + x_2)(x_3 + x_4)$ must (independently) (1) swap or fix 1 and 2, (2) swap or fix 3 and 4, and (3) swap or fix the indices of the two factors. This gives the same set of permutations as in the previous part.


Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu