If you find any mistakes, please make a comment! Thank you.

When is a map from Z/(48) to Cyc(36) a group homomorphism?


Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 2.3 Exercise 2.3.9

Let $Z_{36} = \langle x \rangle$. For which integers $a$ does the map $\psi_a$ defined by $\overline{1} \mapsto x^a$ extend to a well defined homomorphism $\mathbb{Z}/(48) \rightarrow Z_{36}$? Can $\psi_a$ be a surjective homomorphism?


Solution: We begin with a couple of lemmas.

Lemma 1: Let $G = \langle x \rangle$ be a cyclic group, $H$ a group, and $\varphi : G \rightarrow H$ a group homomorphism. Then $\varphi$ is uniquely determined by $\varphi(x)$.

Proof: Suppose we have two homomorphisms $\varphi$, $\psi$ : $G \rightarrow H$, such that $\varphi(x) = \psi(x)$. Since $G$ is cyclic, an arbitrary $y \in G$ can be written as $x^a$ for some $a$. Then $$\varphi(y) = \varphi(x^a) = \varphi(x)^a = \psi(x)^a = \psi(x^a) = \psi(y).$$ So $\varphi = \psi.$ $\square$

Lemma 2: Let $G$ be a group, $S = \{ x \}$, $Z_n = \langle x \rangle$, and $\overline{\varphi} : S \rightarrow G$ a set mapping. Then $\overline{\varphi}$ extends to a homomorphism $\varphi : Z_n \rightarrow G$ if and only if $\overline{\varphi}(x)^n = 1$.

Proof: ($\Rightarrow$) We have $x^n = 1$, so that $$\varphi(x^n) = \varphi(x)^n = \overline{\varphi}(x)^n = 1. $$($\Leftarrow$) Let $a,b$ be integers such that $x^a = x^b$. Then $a = b \pmod n$, so that $b = nk+a$ for some $k$. Thus $$\varphi(x^b) = \varphi(x^{kn+a}) = (\varphi(x)^n)^k \varphi(x^a) = \varphi(x^a),$$ so that $\varphi$ is well defined. Now suppose $z,w \in G$ with $z = x^a$, $w = x^b$. Then $$\varphi(zw) = \overline{\varphi}(x^{a+b}) = \overline{\varphi}(x)^{a+b} = \overline{\varphi}(x)^a \overline{\varphi}^b = \varphi(z) \varphi(w).$$ Thus $\varphi$ is a homomorphism. $\square$

Lemma 3: A map $\overline{\varphi} : \mathbb{Z}/(n) \rightarrow \mathbb{Z}/(m)$ given by $\overline{1} \mapsto \overline{a}$ extends to a group homomorphism $\varphi : \mathbb{Z}/(n) \rightarrow \mathbb{Z}/(m)$ if and only if $\frac{m}{\mathsf{gcd}(m,n)}$ divides $a$.

Proof: If $\overline{\varphi}$ extends, then by Lemma 2, we have $na \equiv 0 \pmod m$, so that $m$ divides $na$. Let $d = \mathsf{gcd}(m,n)$ and write $m = dm_1$ and $n = dn_1$. Then $m_1$ divides $n_1a$, and since $m_1$ and $n_1$ are relatively prime, $m_1 = \frac{m}{\mathsf{gcd}(m,n)}$ divides a by Euclid’s lemma.

Conversely, if $\frac{m}{\mathsf{gcd}(m,n)}$ divides $a$, then $m$ divides $na$, so that $\overline{\varphi}$ extends to a homomorphism by Lemma 2. $\square$

Here, $\mathsf{gcd}(36,48) = 12$ and $\frac{36}{12} = 3$. So $\overline{\varphi}$ extends if and only if $3|a$. There are 12 such $a$.

Suppose some such $\varphi$ is surjective; then we have $1 \equiv 3 \pmod{36}$, a contradiction.

Note that since $\mathsf{im}\ \varphi_a = \langle x^a \rangle$, $|\mathsf{im}\ \varphi_a| < 36$. Hence $\varphi_a$ cannot be surjective.


See also here https://wolfweb.unr.edu/homepage/naik/classes/731/60.9.Soln.pdf


Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu