Solutions to Real Analysis: A Long-Form Mathematics Textbook Chapter 6
Exercise 6.5 Solution: If $a=0$, for any $\e >0$ and any $x_0\in\ R$, and any $\delta >0$, we have\[|f(x)-f(x_0)|=|b-b|=0 < \e\] for all $|x-x_0|<\delta$. Hence $f$ is continuous at $x_0$.…