Chapter 3 Exercise F
1. Solution: For any $\vp\in\ca L(V,\mb F)$, if $\dim \m{range} \vp=0$, then $\vp$ is the zero map. If $\dim \m{range} \vp=1$, then $\vp$ is surjective since $\dim\mb F=1$. Moreover, $\dim…
1. Solution: For any $\vp\in\ca L(V,\mb F)$, if $\dim \m{range} \vp=0$, then $\vp$ is the zero map. If $\dim \m{range} \vp=1$, then $\vp$ is surjective since $\dim\mb F=1$. Moreover, $\dim…
Exercises 1,2 and 4. For Problem 2, please also see Carson Rogers’s comment. 4. Solution: For any $f\in \ca L(V_1\times \cdots\times V_m,W)$ and given $i\in \{1,\cdots,m\}$, define $f_i:V_i\to W$ by…