If you find any mistakes, please make a comment! Thank you.

Solution to Linear Algebra Hoffman & Kunze Chapter 1.3


Exercise 1.3.1

The matrix of coefficients is
$$\left[\begin{array}{cc}1-i&-i\\2&1-i\end{array}\right].$$Row reducing
$$\rightarrow \left[\begin{array}{cc}2&1-i\\1-i&-i\end{array}\right]\rightarrow\left[\begin{array}{cc}2&1-i\\0&0\end{array}\right]
$$Thus $2x_1+(1-i)x_2=0$. Thus for any $x_2\in\mathbb C$, $(\frac12(i-1)x_2,x_2)$ is a solution and these are all solutions.


Exercise 1.3.2

We have$$\rightarrow\left[\begin{array}{ccc}1&-3&0\\2&1&1\\3&-1&2\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&-3&0\\0&7&1\\0&8&2\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&-3&0\\0&1&1/7\\0&8&2\end{array}\right]$$ $$\rightarrow\left[\begin{array}{ccc}1&0&3/7\\0&1&1/7\\0&0&6/7\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&0&3/7\\0&1&1/7\\0&0&1\end{array}\right]\rightarrow\left[\begin{array}{ccc}1&0&0\\0&1&10\\0&0&1\end{array}\right].$$Thus $A$ is row-equivalent to the identity matrix. It follows that the only solution to the system is $(0,0,0)$.


Exercise 1.3.3

The system $AX=2X$ is
$$\left[\begin{array}{ccc}6&-4&0\\4&-2&0\\-1&0&3\end{array}\right]\left[\begin{array}{c}x\\y\\z\end{array}\right]=2\left[\begin{array}{c}x\\y\\z\end{array}\right]$$which is the same as
\begin{alignat*}{1}
6x-4y&=2x\\
4x-2y&=2y\\
-x+3z&=2z
\end{alignat*}which is equivalent to
\begin{alignat*}{1}
4x-4y&=0\\
4x-4y&=0\\
-x+z&=0
\end{alignat*}The matrix of coefficients is
$$\left[\begin{array}{ccc}4&-4&0\\4&-4&0\\-1&0&1\end{array}\right]$$which row-reduces to
$$\left[\begin{array}{ccc}1&0&-1\\0&1&-1\\0&0&0\end{array}\right]$$Thus the solutions are all elements of $F^3$ of the form $(x,x,x)$ where $x\in F$.

The system $AX=3X$ is
$$\left[\begin{array}{ccc}6&-4&0\\4&-2&0\\-1&0&3\end{array}\right]\left[\begin{array}{c}x\\y\\z\end{array}\right]=3\left[\begin{array}{c}x\\y\\z\end{array}\right]$$which is the same as
\begin{alignat*}{1}
6x-4y &=3x\\
4x-2y&=3y\\
-x+3z&=3z
\end{alignat*}
which is equivalent to
\begin{alignat*}{1}
3x-4y&=0\\
x-2y&=0\\
-x&=0
\end{alignat*}The matrix of coefficients is
$$\left[\begin{array}{ccc}3&-4&0\\1&-2&0\\-1&0&0\end{array}\right]$$which row-reduces to$$\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&0\end{array}\right]$$Thus the solutions are all elements of $F^3$ of the form $(0,0,z)$ where $z\in F$.


Exercise 1.3.4

We have $$A\rightarrow\left[\begin{array}{ccc}
1 & -2 & 1\\
i & -(1+i) & 0\\
1 & 2i & -1
\end{array}\right]\rightarrow
\left[\begin{array}{ccc}
1 & -2 & 1\\
0 & -1+i & -i\\
0 & 2+2i & -2
\end{array}\right]\rightarrow
\left[\begin{array}{ccc}
1 & -2 & 1\\
0 & 1 & \frac{1-i}2\\
0 &2+ 2i & -2
\end{array}\right]
$$ $$\rightarrow
\left[\begin{array}{ccc}
1 & -2 & 1\\
0 & 1 & \frac{i-1}2\\
0 & 0 & 0
\end{array}\right]\rightarrow
\left[\begin{array}{ccc}
1 & 0 & i\\
0 & 1 & \frac{i-1}2\\
0 & 0 & 0
\end{array}\right].
$$


Exercise 1.3.5

Call the first matrix $A$ and the second matrix $B$. The matrix $A$ is row-equivalent to $$A’=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]$$ and the matrix $B$ is row-equivalent to $$B’=\left[\begin{array}{ccc}1&0&1/2\\0&1&3/2\\0&0&0\end{array}\right].$$

By Theorem 3 page 7 $AX=0$ and $A’X=0$ have the same solutions. Similarly $BX=0$ and $B’X=0$ have the same solutions. Now if $A$ and $B$ are row-equivalent then $A’$ and $B’$ are row equivalent. Thus if $A$ and $B$ are row equivalent then $A’X=0$ and $B’X=0$ must have the same solutions. But $B’X=0$ has infinitely many solutions and $A’X=0$ has only the trivial solution $(0,0,0)$. Thus $A$ and $B$ cannot be row-equivalent.


Exercise 1.3.6

Case $a\not=0$: Then to be in row-reduced form it must be that $a=1$ and $A=\left[\begin{array}{cc}1&b\\c&d\end{array}\right]$ which implies $c=0$, so $A=\left[\begin{array}{cc}1&b\\0&d\end{array}\right]$. Suppose $d\not=0$. Then to be in row-reduced form it must be that $d=1$ and $b=0$, so $A=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]$ which implies $a+b+c+d\not=0$. So it must be that $d=0$, and then it follows that $b=-1$. So $a\not=0$ $\Rightarrow$ $A=\left[\begin{array}{cc}1&-1\\0&0\end{array}\right]$.

Case $a=0$: Then $A=\left[\begin{array}{cc}0&b\\c&d\end{array}\right]$. If $b\not=0$ then $b$ must equal $1$ and $A=\left[\begin{array}{cc}0&1\\c&d\end{array}\right]$ which forces $d=0$. So $A=\left[\begin{array}{cc}0&1\\c&0\end{array}\right]$ which implies (since $a+b+c+d=0$) that $c=-1$. But $c$ cannot be $-1$ in row-reduced form. So it must be that $b=0$. So $A=\left[\begin{array}{cc}0&0\\c&d\end{array}\right]$. If $c\not=0$ then $c=1$, $d=-1$ and $A=\left[\begin{array}{cc}0&0\\1&-1\end{array}\right]$. Otherwise $c=0$ and $A=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]$.

Thus the three possibilities are:
$$\left[\begin{array}{cc}0&0\\0&0\end{array}\right],\quad\left[\begin{array}{cc}1&-1\\0&0\end{array}\right],\quad\left[\begin{array}{cc}0&0\\1&-1\end{array}\right].$$


Exercise 1.3.7

Write the matrix as
$$\left[\begin{array}{c}
R_1\\
R_2\\
R_3\\
\vdots\\
R_n
\end{array}\right].$$WOLOG we’ll show how to exchange rows $R_1$ and $R_2$. First add $R_2$ to $R_1$:
$$\left[\begin{array}{c}
R_1+R_2\\
R_2\\
R_3\\
\vdots\\
R_n
\end{array}\right].$$Next subtract row one from row two:
$$\left[\begin{array}{c}
R_1+R_2\\
-R_1\\
R_3\\
\vdots\\
R_n
\end{array}\right].$$Next add row two to row one again
$$\left[\begin{array}{c}
R_2\\
-R_1\\
R_3\\
\vdots\\
R_n
\end{array}\right].$$Finally multiply row two by $-1$:
$$\left[\begin{array}{c}
R_2\\
R_1\\
R_3\\
\vdots\\
R_n
\end{array}\right].$$


Exercise 1.3.8

(a) In this case the system of equations is
\begin{alignat*}{1}
0\cdot x_1 + 0\cdot x_2 &= 0\\
0\cdot x_1 + 0\cdot x_2 &= 0
\end{alignat*}Clearly any $(x_1,x_2)$ satisfies this system since $0\cdot x=0$ $\forall$ $x\in F$.

(b) Let $(u,v)\in F^2$. Consider the system:
\begin{alignat*}{1}
a\cdot x_1 + b\cdot x_2 &= u\\
c\cdot x_1 + d\cdot x_2 &= v
\end{alignat*}If $ad-bc\not=0$ then we can solve for $x_1$ and $x_2$ explicitly as
$$
x_1=\frac{du-bv}{ad-bc}\quad x_2=\frac{av-cu}{ad-bc}.$$Thus there’s a unique solution for all $(u,v)$ and in partucular when $(u,v)=(0,0)$.

(c) Assume WOLOG that $a\not=0$. Then $ad-bc=0$ $\Rightarrow$ $d=\frac{cb}{a}$. Thus if we multiply the first equation by $\frac ca$ we get the second equation. Thus the two equations are redundant and we can just consider the first one $a x_1+bx_2=0$. Then any solution is of the form $(-\frac bay,y)$ for arbitrary $y\in F$. Thus letting $y=1$ we get the solution $(-b/a,1)$ and the arbitrary solution is of the form $y(-b/a,1)$ as desired.

From http://greggrant.org

Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu