If you find any mistakes, please make a comment! Thank you.

Solution to Linear Algebra Hoffman & Kunze Chapter 3.3


Exercise 3.3.1

Let $V$ be the set of complex numbers and let $F$ be the field of real numbers. With the usual operations, $V$ is a vector space over $F$. Describe explicitly an isomorphism of this space onto $\mathbb R^2.$

Solution: The natural isomorphism from $V$ to $\mathbb R^2$ is given by $a+bi\mapsto(a,b)$. Since $i$ acts like a placeholder for addition in $\mathbb C$, $$(a+bi)+(c+di)=(a+c)+(b+d)i\mapsto(a+c,b+d)=(a,b)+(c,d).$$ And $$c(a+bi)=ca+cbi\mapsto(ca,cb)=c(a,b).$$ Thus this is a linear transformation. The inverse is clearly $(a,b)\mapsto a+bi$. Thus the two spaces are isomorphic as vector spaces over $\mathbb R$.


Exercise 3.3.2

Let $V$ be a vector space over the field of complex numbers, and suppose there is an isomorphism $T$ of $V$ into $\Bbb C^3$. Let $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ be vectors in $V$ such that
$$T\alpha_1=(1,0,i),\quad T\alpha_2=(-2,1+i,0),$$ $$T\alpha_3=(-1,1,1),\quad T\alpha_4=(\sqrt{2},i,3).$$(a) Is $\alpha_1$ in the subspace spanned by $\alpha_2$ and $\alpha_3$?
(b) Let $W_1$ be the subspace spanned by $\alpha_1$ and $\alpha_2$, and let $W_2$ be the subspace spanned by $\alpha_3$ and $\alpha_4$. What is the intersection of $W_1$ and $W_2$?
(c) Find a basis for the subspace of $V$ spanned by the four vectors $\alpha_j$.

Solution:

(a) Since $T$ is an isomorphism, it suffices to determine whether $T\alpha_1$ is contained in the subspace spanned by $T\alpha_2$ and $T\alpha_3$. In other words we need to determine if there is a solution to
$$\left[\begin{array}{cc}-2&-1\\1+i&1\\0&1\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}1\\0\\i\end{array}\right].$$
To do this we row-reduce the augmented matrix
$$\left[\begin{array}{cc|c}-2&-1&1\\1+i&1&0\\0&1&i\end{array}\right]
\rightarrow\left[\begin{array}{cc|c}1&1/2&-1/2\\1+i&1&0\\0&1&i\end{array}\right]
\rightarrow\left[\begin{array}{cc|c}1&1/2&-1/2\\0&1&i\\1+i&1&0\end{array}\right]$$$$\rightarrow\left[\begin{array}{cc|c}1&1/2&-1/2\\0&1&i\\0&\frac{1-i}{2}&\frac{1+i}{2}\end{array}\right]
\rightarrow\left[\begin{array}{cc|c}1&0&\frac{-1-i}{2}\\0&1&i\\0&0&0\end{array}\right]$$The zero row on the left of the dividing line has zero also on the right. This means the system has a solution. Therefore we can conclude that $\alpha_1$ is in the subspace generated by $\alpha_2$ and $\alpha_3$.

(b) Since $T\alpha_1$ and $T\alpha_2$ are linearly independent, and $T\alpha_3$ and $T\alpha_4$ are linearly independent, $\dim(W_1)=\dim(W_2)=2$. We row-reduce the matrix whose columns are the $T\alpha_i$:
$$\left[\begin{array}{cccc}1&-2&-1&\sqrt{2}\\0&1+i&1&i\\i&0&1&3\end{array}\right]$$which yields
$$\left[\begin{array}{cccc}1&0&-i&0\\0&1&\frac{1-i}{2}&0\\0&0&0&1\end{array}\right],$$from which we deduce that $T\alpha_1,T\alpha_2,T\alpha_3,T\alpha_4$ generate a space of dimension three, thus $\dim(W_1+W_2)=3$. Since $\dim(W_1)=\dim(W_2)=2$ it follows from Theorem 6, page 46 that $\dim(W_1\cap W_2)=1$.

Now $AX=0$ $\Leftrightarrow$ $RX=0$ where $R$ is the row reduced echelon form of $A$. This follows from the fact that $R=PA$; multiply both sides of $AX=0$ on the left by $P$. Solving for $X$ in $RX=0$ gives the general solution is of the form $(ic,\frac{i-1}{2}c,c,0)$. Letting $c=2$ gives
$$2iT\alpha_1+(i-1)T\alpha_2+2T\alpha_3=0$$which implies
$$T\alpha_3=-iT\alpha_1+\frac{1-i}{2}T\alpha_2$$ which implies $T\alpha_3\in TW_1$. Thus $\alpha_3\in W_1$. Thus $\alpha_3\in W_1\cap W_2$. Since $\dim(W_1\cap W_2)=1$ it follows that $W_1\cap W_2=\mathbb C\alpha_3.$

(c) We have determined in part (b) that the $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ span a space of dimension three, and that $\alpha_3$ is in the space generated by $\alpha_1$ and $\alpha_2$. Thus $\{\alpha_1,\alpha_2,\alpha_4\}$ give a basis for the subspace spanned by $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$, which in fact is all of $\mathbb C^3$.


Exercise 3.3.3

Let $W$ be the set of all $2\times2$ complex Hermitian matrices, that is, the set of $2\times2$ complex matrices $A$ such that $A_{ij}=\overline{A_{ji}}$ (the bar denoting complex conjugation). As we pointed out in Example 6 of Chapter 2, $W$ is a vector space over the field of real numbers, under the usual operations. Verify that $$(x,y,z,t)\rightarrow\left[\begin{array}{cc}t+x&y+iz\\y-iz&t-x\end{array}\right]$$ is an isomorphism of $\mathbb R^4$ onto $W$.

Solution: The function is linear since the four components are all linear combinations of the components of the domain $(x,y,z,t)$. Identify $\mathbb C^{2\times2}$ with $\mathbb C^4$ by $A\mapsto(A_{11},A_{12},A_{21},A_{22})$. Then the matrix of the transformation is given by
$$\left[\begin{array}{cccc}1&0&0&1\\0&1&i&0\\0&1&-i&0\\-1&0&0&1\end{array}\right].$$ As usual, the transformation is an isomorphism if the matrix is invertible. We row-reduce to veryify the matrix is invertible. We will row-reduce the augmented matrix in order to find the inverse explicitly:
$$\left[\begin{array}{cccc|cccc}1&0&0&1&1&0&0&0\\0&1&i&0&0&1&0&0\\0&1&-i&0&0&0&1&0\\-1&0&0&1&0&0&0&1\end{array}\right].$$This reduces to
$$\rightarrow\left[\begin{array}{cccc|cccc}1&0&0&0&1/2&0&0&-1/2\\0&1&0&0&0&1/2&1/2&0\\0&0&1&0&0&-i/2&i/2&0\\0&0&0&1&1/2&0&0&1/2\end{array}\right].$$Thus the inverse transformation is
$$\left[\begin{array}{cc}x&y\\z&w\end{array}\right]\mapsto\left(\frac{x-w}{2},\ \ \frac{y+z}2,\ \ \frac{i(z-y)}2,\ \ \frac{x+w}2\right).$$


Exercise 3.3.4

Show that $F^{m\times n}$ is isomorphic to $F^{mn}$.

Solution: Define the bijection $\sigma$ from $\{(a,b)\mid a,b\in\mathbb N, 1\leq a\leq m, 1\leq b\leq n\}$ to $\{1,2,\dots,mn\}$ by $(a,b)\mapsto (a-1)n+b$. Define the function $G$ from $F^{m\times n}$ to $F^{mn}$ as follows. Let $A\in F^{m\times n}$. Then map $A$ to the $mn$-tuple that has $A_{ij}$ in the $\sigma(i,j)$ position. In other words $$A\mapsto(A_{11},A_{12},A_{13},\dots,A_{1n},A_{21},A_{22},A_{23},\dots,A_{2n},\dots \dots, A_{nn}).$$ Since addition in $F^{m\times n}$ and in $F^{mn}$ is performed compenent-wise, $G(A+B)=G(A)+G(B)$. Similarly since scalar multiplication factors out of vectors component-wise in the same way in $F^{m\times n}$ as in $F^{mn}$, we also have $G(cA)=cG(A)$. Thus $G$ is a linear function. $G$ is clearly one-to-one (as well as clearly onto), and both $F^{m\times n}$ and $F^{mn}$ have dimension $mn$ (by Example 17, page 45 and Exercise 2.3.12, page 49), thus (by Theorem 9, page 81) it follows that $G$ has an inverse and therefore is an isomorphism.


Exercise 3.3.5

Let $V$ be the set of complex numbers regarded as a vector space over the field of real numbers (Exercise 1). We define a function $T$ from $V$ into the space of $2\times2$ real matrices, as follows. If $z=x+iy$ with $x$ and $y$ real numbers, then
$$T(z)=\left[\begin{array}{cc}x+7y&5y\\-10y&x-7y\end{array}\right].$$(a) Verify that $T$ is a one-one (real) linear transformation of $V$ into the space of $2\times2$ matrices.
(b) Verify that $T(z_1z_2)=T(z_1)T(z_2)$.
(c) How would you describe the range of $T$?

Solution:

(a) The four coordinates of $T(z)$ are written as linear combinations of the coordinates of $z$ (as a vector over $\mathbb R$). Thus $T$ is clearly a linear transformation. To see that $T$ is one-to-one, let $z=x+yi$ and $w=a+bi$ and suppose $T(z)=T(w)$. Then considering the top right entry of the matrix we see that $5y=5b$ which implies $b=y$. It now follows from the top left entry of the matrix that $x=a$. Thus $T(z)=T(w)$ $\Rightarrow$ $z=w$, thus $T$ is one-to-one.

(b) Let $z_1=x+yi$ and $z_2=a+bi$. Then
$$T(z_1z_2)=T((ax-by)+(ay+bx)i)=\left[\begin{array}{cc}(ax-by)+7(ay+bx)&5(ay+bx)\\-10(ay+bx)&(ax-by)-7(ay+bx)\end{array}\right].$$On the other hand,
$$T(z_1)T(z_2)=\left[\begin{array}{cc}x+7y&5y\\-10y&x-7y\end{array}\right]\left[\begin{array}{cc}a+7b&5b\\-10b&a-7b\end{array}\right]$$$$=\left[\begin{array}{cc}(ax-by)+7(ay+bx)&5(ay+bx)\\-10(ay+bx)&(ax-by)-7(ay+bx)\end{array}\right].$$Thus $T(z_1z_2)=T(z_1)T(z_2)$.

(c) The range of $T$ has (real) dimension equal to two by part (a), and so the range of $T$ is isomorphic to $\mathbb C$ as real vector spaces. But both spaces also have a natural multiplication and in part (b) we showed that $T$ respects the multiplication. Thus the range of $T$ is isomorphic to $\mathbb C$ as fields and we have essentially found an isomorphic copy of the field $\mathbb C$ in the algebra of $2\times 2$ real matrices.


Exercise 3.3.6

Let $V$ and $W$ be finite-dimensional vector spaces over the field $F$. Prove that $V$ and $W$ are isomorphic if and only if $\dim(V)=\dim(W)$.

Solution: Suppose $\dim(V)=\dim(W)=n$. By Theorem 10, page 84, both $V$ and $W$ are isomorphic to $F^n$, and consequently, since isomorphism is an equivalence relation, $V$ and $W$ are isomorphic to each other. Conversely, suppose $T$ is an isomorphism from $V$ to $W$. Suppose $\dim(W)=n$. Then by Theorem 10 again, there is an isomorphism $S:W\rightarrow F^n$. Thus $ST$ is an isomorphism from $V$ to $F^n$ implying also $\dim(V)=n$.


Exercise 3.3.7

Let $V$ and $W$ be vector spaces over the field $F$ and let $U$ be an isomorphism of $V$ onto $W$. Prove that $T\rightarrow UTU^{-1}$ is an isomorphism of $L(V,V)$ onto $L(W,W)$.

Solution: $L(V,V)$ is defined on page 75 as the vector space of linear transformations from $V$ to $V$, and likewise $L(W,W)$ is the vector space of linear transformations from $W$ to $W$.

Call the function $f$. We know $f(T)$ is linear since it is a composition of three linear tranformations $UTU^{-1}$. Thus indeed $f$ is a function from $L(V,V)$ to $L(W,W)$. Now $$f(aT+T’)=U(aT+T’)U^{-1}=(aUT+UT’)U^{-1}=aUTU^{-1}+UT’U^{-1}=af(T)+f(T’).$$ Thus $f$ is linear. We just must show $f$ has an inverse. Let $g$ be the function from $L(W,W)$ to $L(V,V)$ given by $g(T)=U^{-1}TU$. Then $gf(T)=U^{-1}(UTU^{-1})U=T$. Similarly $fg=I$. Thus $f$ and $g$ are inverses. Thus $f$ is an isomorphism.

From http://greggrant.org

Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu