If you find any mistakes, please make a comment! Thank you.

Solution to Linear Algebra Hoffman & Kunze Chapter 4.3


Exercise 4.3.1

Use the Lagrange interpolation formula to find a polynomial $f$ with real coefficients such that $f$ has degree $\leq 3$ and $f(-1)=-6$, $f(0)=2$, $f(1)=-2$, $f(2)=6$.

Solution: $t_0=-1$, $t_1=0$, $t_2=1$, $t_3=2$. Therefore
\begin{alignat*}{2}
P_0&=\frac{x(x-1)(x-2)}{(-1)(-2)(-3)} =& {\textstyle \frac{-1}{6}}x(x-1)(x-2)\\
P_1&=\frac{(x+1)(x-1)(x-2)}{(-1)(-2)}=&{\textstyle \frac{1}{2}}(x-1)(x+1)(x-2)\\
P_2&=\frac{(x+1)x(x-2)}{(2)(1)(-1)}=&{\textstyle \frac{-1}{2}}x(x+1)(x-2)\\
P_3&=\frac{(x+1)x(x-1)}{(3)(2)(1)}=&{\textstyle \frac{1}{6}}(x-1)(x+1).
\end{alignat*}Thus
$$f=f(-1)\cdot P_0+f(0)\cdot P_1+f(1)\cdot P_2+f(2)\cdot P_3$$$$=-6P_0+2P_1-2P_2+6P_3$$$$=x(x-1)(x-2)+(x-1)(x+1)(x-2)+x(x+1)(x-2)+x(x-1)(x+1)$$$$=(x^3-3x^2+2x)+(x^3-2x^2-x+2)+(x^3-x^2-2x)+(x^3-x)$$$$=4x^3-6x^2-2x+2.$$Checking:
$$f(-1)=-4-6+2+2=-6$$$$f(0)=2$$$$f(1)=4-6-2+2=-2$$$$f(2)=32-24-4+2=6.$$


Exercise 4.3.2

Let $\alpha,\beta,\gamma,\delta$ be real numbers. We ask when it is possible to find a polynomial $f$ over $\Bbb R$, of degree not more than $2$, such that $f(-1)=\alpha$, $f(1)=\beta$, $f(3)=\gamma$ and $f(0)=\delta$. Prove that this is possible if and only if
$$3\alpha+6\beta-\gamma-8\delta=0.$$Solution: Let $t_0=-1$, $t_1=1$, $t_2=3$. We will apply the Lagrange interpolation formula to get a quadratic satisfying $f(t_0)=\alpha$, $f(t_1)=\beta$, $f(t_2)=\gamma$. Then we will figure out what condition on $\alpha,\beta,\gamma,\delta$ will guarantee that it also satisfies $f(0)=\delta$.
\begin{alignat*}{2}
P_0=&\frac{(x-1)(x-3)}{(-2)(-4)}=&{\textstyle \frac18}(x-1)(x-3)\\
P_1=&\frac{(x+1)(x-3)}{(2)(-2)}=&{\textstyle \frac{-1}{4}}(x+1)(x-3)\\
P_2=&\frac{(x+1)(x-1)}{(4)(2)}=&{\textstyle \frac{1}{8}}(x+1)(x-1)
\end{alignat*}Therefore
$$f=\frac{\alpha}{8}(x-1)(x-3)-\frac{\beta}{4}(x+1)(x-3)+\frac{\delta}{8}(x+1)(x-1)$$$$={\textstyle\frac18}(\alpha x^2-4\alpha x+3\alpha-2\beta x^2+4\beta x+6\beta +\gamma x^2-\gamma).$$Now $f(0)=\gamma$ implies
$$\frac18(3\alpha+6\beta-\gamma)=\delta.$$Simplifying gives
\begin{equation}
3\alpha+6\beta-\gamma-8\delta=0.
\label{f2222f3}
\end{equation}Thus if (\ref{f2222f3}) is satisfied then the four values of $f$ are as required. Since three points determine a quadratic, there cannot be any quadratic other than $f$ that goes through $(-1,\alpha)$, $(1,\beta)$, $(3,\delta)$. Thus this condition is not only sufficient but it is necessary.


Exercise 4.3.3

Let $F$ be the field of real numbers,
\begin{alignat*}{1}
A=&\left[\begin{array}{cccc}
2 & 0 & 0 & 0\\
0 & 2 & 0 & 0\\
0 & 0 & 3 & 0\\
0 & 0 & 0 & 1
\end{array}\right]\\
p=&(x-2)(x-3)(x-1).
\end{alignat*}(a) Show that $p(A)=0$.
(b) Let $P_1$, $P_2$, $P_3$ be the Lagrange polynomials for $t_1=2$, $t_2=3$, $t_2=1$. Compute $E_i=P_i(A)$, $i=1,2,3$.
(c) Show that $E_1+E_2+E_3=I$, $E_iE_j=0$ if $i\not=j$, $E_i^2=E_i$.
(d) Show that $A=2E_1+3E_2+E_3$.

Solution:

(a) We have
$$(A-2)(A-3)(A-1)$$$$=\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & -1
\end{array}\right]
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & -2
\end{array}\right]
\left[\begin{array}{cccc}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 0\\
0 & 0 & 0 & 0
\end{array}\right]$$$$=
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & -1
\end{array}\right]
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{array}\right]=
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{array}\right].
$$

(b) $t_1=2$, $t_2=3$, $t_3=1$.
\begin{alignat*}{1}
P_1=&-(x-3)(x-1)\\
P_2=&{\textstyle\frac12}(x-2)(x-1)\\
P_3=&{\textstyle\frac12}(x-2)(x-3)
\end{alignat*}Thus
$$
E_1=P_1(A)=-(A-3I)(A-I)\\
=-
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & -2
\end{array}\right]
\left[\begin{array}{cccc}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 0\\
0 & 0 & 0 & 0
\end{array}\right]\\
=
\left[\begin{array}{cccc}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{array}\right]\\
$$$$
E_2=P_2(A)=\frac12
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & -1
\end{array}\right]
\left[\begin{array}{cccc}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 2 & 0\\
0 & 0 & 0 & 0
\end{array}\right]\\
=
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 0
\end{array}\right]\\
$$$$
E_3=P_3(A)=\frac12
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & -1
\end{array}\right]
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & -2
\end{array}\right]\\
=
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 1
\end{array}\right].
$$(c) All three of these facts are basically obvious by visual inspection of the matrices in part (b). $E_1+E_2+E_3=I$ is obvious by inspection. Likewise it is evident by inspection that $E_iE_j=0$ if $i\not=j$. Lastly it is obvious that $E_i^2=E_i$. I’m not sure what there is to prove here.

(d) We have
$$2E_1+3E_2+E_3$$$$=
2\left[\begin{array}{cccc}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0
\end{array}\right]
+3
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 0
\end{array}\right]
+
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 1
\end{array}\right]
$$$$=
\left[\begin{array}{cccc}
2 & 0 & 0 & 0\\
0 & 2 & 0 & 0\\
0 & 0 & 3 & 0\\
0 & 0 & 0 & 1
\end{array}\right].
$$


Exercise 4.3.4

Let $p=(x-2)(x-3)(x-1)$ and let $T$ be any linear operator on $\mathbb R^4$ such that $p(T)=0$. Let $P_1$, $P_2$, $P_3$ be the Lagrange polynomials of Exercise 3, and let $E_i=P_i(T)$, $i=1,2,3$. Prove that
$$E_1+E_2+E_3=I,\quad E_iE_j=0 \text{ if } i\not=j,$$$$E_i^2=E_i,\quad\text{and}\quad T=2E_1+3E_2+E_3.$$Solution: Recall
\begin{alignat*}{1}
P_1=&-x^2+4x-3\\
P_2=&{\textstyle\frac12}x^2-{\textstyle\frac32}x+1\\
P_2=&{\textstyle\frac12}x^2-{\textstyle\frac52}x+3
\end{alignat*}By definition $P(T)+Q(T)=(P+Q)(T)$ and $P(T)Q(T)=(PQ)(T)$.  Now as polynomials $P_1+P_2+P_3=1$. Thus $$E_1+E_2+E_3=P_1(T)+P_2(T)+P_3(T)=(P_1+P_2+P_3)(T)=I.$$Notice that $P$ divides $P_iP_j$ whenever $i\not=j$. Thus $P_iP_j=PQ$ for some $Q$ (as polynomials). Thus $$E_iE_j=P_i(T)P_j(T)=(P_iP_j)(T)=P(T)Q(T)=0\cdot Q(T)=0.$$ Thus $E_iE_j(T)=0$.

We prove the next part in general. Let
\begin{alignat*}{1}
f_1=&x-a\\
f_2=&x-b\\
f_3=&x-c
\end{alignat*}Thus
\begin{alignat*}{1}
P_1=&\frac{f_2f_3}{(a-b)(a-c)}\\
P_2=&\frac{f_1f_3}{(b-a)(b-c)}\\
P_3=&\frac{f_1f_2}{(c-a)(c-b)}\\
\end{alignat*}Let $d=2c-b-a$. Then it follows by simply multiplying it out that
$$\frac{df_3+f_3^2}{(c-a)(c-b)}=\frac{f_1f_2}{(c-a)(c-b)}-1.$$Which is equivalent to
\begin{equation}
\frac{df_3+f_3^2}{(c-a)(c-b)}=P_3-1.
\label{fff2303r}
\end{equation}This equation is true as polynomials. We now evaluate things at $T$.
$$f_1(T)f_2(T)f_3(T)=0$$$$\Longrightarrow f_1(T)f_2(T)f_3^2(T)=0$$$$\Longrightarrow\frac{f_1(T)f_2(T)}{(c-a)(c-b)}\cdot\frac{f_3^2(T)}{(c-a)(c-b)}=0.$$Since $f_1(T)f_2(T)f_3(T)=0$, this implies
$$\frac{f_1(T)f_2(T)}{(c-a)(c-b)}\cdot\frac{df_3(T)+f_3^2(T)}{(c-a)(c-b)}=0.$$Equivalently
$$P_3(T)\cdot\frac{df_3(T)+f_3^2(T)}{(c-a)(c-b)}=0.$$By (\ref{fff2303r}) this implies
$$P_3(T)(P_3(T)-1)=0.$$Thus
$$P_3^2(T)=P_3(T).$$Thus $E_3^2=E_3$. Since $a,b,c$ were general, the same follows for $E_1$ and $E_2$.

It remains to show $T=2E_1+3E_2+E_3$. We first note that as polynomials
$$2P_1+3P_2+P_3$$$$=(-2x^2+8x-6)+({\textstyle\frac32}x^2-{\textstyle\frac92}x+3)+({\textstyle\frac12}x^2-{\textstyle\frac52}x+3)=x.$$Plugging in $T$ we get
$$2P_1(T)+3P_2(T)+P_3(T)=T.$$Thus
$$2E_1+3E_2+E_3=T.$$


Exercise 4.3.5

Let $n$ be a positive integer and $F$ a field. Suppose $T$ is an $n\times n$ matrix over $F$ and $P$ is an invertible $n\times n$ matrix over $F$. If $f$ is any polynomial over $F$, prove that
$$f(P^{-1}TP)=P^{-1}f(T)P.$$Solution: First note that $(P^{-1}xP)^n=P^{-1}x^n(T)P.$ This is obvious by inspection, it follows basically from the fact that multiplication is associative and $P^{-1}P=I$.

The general result now follows
$$P^{-1}f(T)P=P^{-1}(a_0+a_1T+a_2T^2+\cdots+a_nT^n)P$$$$=P^{-1}a_0P+P^{-1}a_1TP+P^{-1}a_2T^2P+\cdots+P^{-1}a_nT^nP$$$$=a_0+a_1(P^{-1}TP)+a_2(P^{-1}TP)^2+\cdots+a_n(P^{-1}TP)^n=f(P^{-1}TP).$$


Exercise 4.3.6

Let $F$ be a field. We have considered certain special linear functionals on $F[x]$ obtained via `evaluation at $t$’:
$$L(f)=f(t).$$Such functionals are not only linear but also have the property that $L(fg)=L(f)L(g)$. Prove that if $L$ is any linear functional on $F[x]$ such that
$$L(fg)=L(f)L(g)$$for all $f$ and $g$, then either $L=0$ or there is a $t$ in $F$ such that $L(f)=f(t)$ for all $f$.

Solution: Let $L$ be a non-zero linear transformation. First note that $L(1)\not=0$ since otherwise $$L(f)=L(f\cdot 1)=L(f)L(1)=L(f)\cdot 0=0$$ for all $f$. Next note that $L(1)=L(1\cdot 1)=L(1)L(1)$ $\Rightarrow$ $L(1)=1$. It follows that $$L(a)=L(a\cdot1)=aL(1)=a$$ for all $a\in F$. Now let $t=L(x)$. Let $f(x)=a_0+a_1x+\cdots+a_nx^n$. Then
$$L(f)=L(a_0+a_1x+\cdots+a_nx^n)$$$$=L(a_0)+L(a_1)L(x)+L(a_2)L(x^2)\cdots+L(a_n)L(x^n)$$$$=a_0+a_1L(x)+a_2L(x)^2+\cdots+a_nL(x)^n$$$$=a_0+a_1t+a_2t^2+\cdots+a_nt^n=f(t).$$

From http://greggrant.org

Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu