If you find any mistakes, please make a comment! Thank you.

Solution to Linear Algebra Hoffman & Kunze Chapter 6.3


Exercise 6.4.1

Let $V$ be a finite-dimensional vector space. What is the minimal polynomial for the identity operator on $V$? What is the minimal polynomial for the zero operator?

Solution: The minimal polynomial for the identity operator is $x-1$. It annihilates the identity operator and the monic zero degree polynomial $p(x)=1$ does not, so it must be the minimal polynomial. The minimal polynomial for the zero operator is $x$. It is a monic polynomial that annihilates the zero operator and again the monic zero degree polynomial $p(x)=1$ does not, so it must be the minimal polynomial.


Exercise 6.4.2

Let $a,b$ and $c$ be tlements of a field $F$, and let $A$ be the following $3\times3$ matrix over $F$:
$$A=\left[\begin{array}{ccc}0 & 0 & c\\1 & 0 & b\\ 0 & 1 & a\end{array}\right].$$Prove that the characteristic polynomial for $A$ is $x^x-ax^2-bx-c$ and that this is also the minimal polynomial for $A$.

Solution: The characteristic polynomial is
$$\left|\begin{array}{ccc} x & 0 & -c\\-1 & x & -b\\0 & -1 & x-a\end{array}\right|=\left|\begin{array}{ccc} x & 0 & -c\\-1 & 0 & x^2-ax-b\\0 & -1 & x-a\end{array}\right|$$$$=1\cdot\left|\begin{array}{cc}x & -c\\ -1 & x^2-ax-b\end{array}\right|=x^3-ax^2-bx-c.$$Now for any $r,s\in F$
$$A^2+rA+s=\left[\begin{array}{ccc}0 & c & ac\\0 & b & c+ba\\1 & a & b+a^2\end{array}\right] + \left[\begin{array}{ccc}0 & 0 & rc\\r& 0 &rb\\0 & r& ra\end{array}\right] + \left[\begin{array}{ccc}s & 0& 0\\0 & s & 0\\0 & 0 & s\end{array}\right]$$$$=\left[\begin{array}{ccc}s & c & ac+rc\\r & b +s& c+ba+br\\1 & a+r & b+a^2+ra+s\end{array}\right]\not=0.$$Thus $f(A)\not=0$ for all $f\in F[x]$ such that $\deg(F)=2$. Thus the minimum polynomial cannot have degree two, it must therefore have degree three. Since it divides $x^3-ax^2-bx-c$ it must equal $x^3-ax^2-bx-c$.


Exercise 6.4.3

Let $A$ be the $4\times4$ real matrix
$$\left[\begin{array}{cccc}1 & 1 & 0 & 0\\
-1 & -1 & 0 & 0\\
-2 & -2 & 2 & 1\\
1 & 1 & -1 & 0\end{array}\right].$$Show that the characteristic polynomial for $A$ is $x^2(x-1)^2$ and that it is also the minimal polynomial.

Solution: The characteristic polynomial equals
$$\left|\begin{array}{cccc}x-1 & -1 & 0 & 0\\
1 &x+ 1 & 0 & 0\\
2 & 2 & x-2 & -1\\
-1 & -1 & 1 & x\end{array}\right|=\left|\begin{array}{cc}x-1&-1\\1&x+1\end{array}\right|\cdot\left|\begin{array}{cc}x-2&-1\\1&x\end{array}\right|,$$$$=x^2(x^2-2x+1)=x^2(x-1)^2.$$Here we used (5-20) page 158. The minimum polynomial is clearly not linear, thus the minimal polynomial is one of $x^2(x-1)^2$, $x^2(x-1)$, $x(x-1)^2$ or $x(x-1)$. We will plug $A$ in to the first three and show it is not zero. It will follow that the minimum polynomial must be $x^2(x-1)^2$.
$$A^2=
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
-3 & -3 & 3 & 2\\
2 & 2 & -2 & -1
\end{array}\right]$$$$A-I=
\left[\begin{array}{cccc}
0 & 1 & 0 & 0\\
-1 & -2 & 0 & 0\\
-2 & -2 & 1 & 1\\
1 & 1 & -1 & -1
\end{array}\right]$$and
$$(A-I)^2=
\left[\begin{array}{cccc}
-1 & -2 & 0 & 0\\
2 & 3 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 0 & 0
\end{array}\right]$$Thus
$$A^2(A-I)=
\left[\begin{array}{cccc}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
-1 & -1 & 1 & 1\\
1 & 1 & -1 & -1
\end{array}\right]\not=0$$$$A(A-I)^2=
\left[\begin{array}{cccc}
1 & 1 & 0 & 0\\
-1 & -1& 0 & 0\\
0 & 0 & 0 & 0\\
0& 0& 0 & 0
\end{array}\right]\not=0$$and
$$A(A-I)=
\left[\begin{array}{cccc}
-1 & -1 & 0 & 0\\
1 & 1& 0 & 0\\
-1 & -1 & 1 & 1\\
1& 1& -2 & -2
\end{array}\right]\not=0.$$Thus the minimal polynomial must be $x^2(x-1)^2$.


Exercise 6.4.4

Is the matrix $A$ of Exercise 3 similar over the field of complex numbers to a diagonal matrix?

Solution: Not diagonalizable, because for characteristic value $c=0$ the matrix $A-cI=A$ and $A$ is row equivalent to
$$\left[\begin{array}{cccc}1&1&0&0\\0&0&1&0\\0&0&0&1\\0&0&0&0\end{array}\right]$$which has rank three. So the null space has dimension one. So if $W$ is the null space for $A-cI$ then $W$ has dimension one, which is less than the power of $x$ in the characteristic polynomial. So by Theorem 2, page 187, $A$ is not diagonalizable.


Exercise 6.4.5

Let $V$ be an $n$-dimensional vector space and let $T$ be a linear operator on $V$. Suppose that there exists some positive integer $k$ so that $T^k=0$. Prove tht $T^n=0$.

Solution: $T^k=0$ $\Rightarrow$ the only characteristic value is zero. We know the minimal polynomial divides this so the minimal polynomial is of the form $t^r$ for some $1\leq r\leq n$. Thus by Theorem 3, page 193, the characteristic polynomial’s only root is zero, and the characteristic polynomial has degree $n$. So the characteristic polynomial equals $t^n$. By Theorem 4 (Caley-Hamilton) $T^n=0$.


Exercise 6.4.6

Find a $3\times3$ matrix for which the minimal polynomial is $x^2$.

Solution: If $A^2=0$ and $A\not=0$ then the minimal polynomial is $x$ or $x^2$. So any $A\not=0$ such that $A^2=0$ has minimal polynomial $x^2$. E.g.
$$A=\left[\begin{array}{ccc}0&0&0\\1&0&0\\0&0&0\end{array}\right].$$


Exercise 6.4.7

Let $n$ be a positive integer, and let $V$ be the space of polynomials over $\Bbb R$ which have degree at most $n$ (throw in the $0$-polynomial). Let $D$ be the differentiation operator on $V$. What is the minimal polynomial for $D$?

Solution: $1,x,x^2,\dots,x^n$ is a basis.
$$1\mapsto0$$$$x\mapsto1$$$$x^2\mapsto2x$$$$\vdots$$$$\rule{4mm}{0mm}x^n\mapsto nx^{n-1}$$The matrix for $D$ is therefore
$$\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0\\
0 & 0 & 2 & 0 & \cdots & 0\\
0 & 0 & 0 & 3 & \cdots & 0\\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & 0 & \cdots &n\\0 & 0 & 0 & 0 & \cdots &0\end{array}\right]$$Suppose $A$ is a matrix such that $a_{ij}=0$ except when $j=i+1$. Then $A^2$ has $a_{ij}=0$ except when $j=i+2$. $A^3$ has $a_{ij}=0$ except when $j=i+3$. Etc., where finally $A^{n+1}=0$. Thus if $a_{ij}\not=0$ $\forall$ $j=i+1$ then $A^k\not=0$ for $k<{n+1}$ and $A^{n+1}=0$. Thus the minimum polynomial divides $x^{n+1}$ and cannot be $x^k$ for $k<{n+1}$. Thus the minimum polynomial is $x^{n+1}$.


Exercise 6.4.8

Let $P$ be the operator on $\mathbb R^2$ which projects each vector onto the $x$-axis, parallel to the $y$-axis: $P(x,y)=(x,0)$. Show that $P$ is linear. What is the minimal polynomial for $P$?

Solution: $P$ can be given in the standard basis by left multiplication by $A=\left[\begin{array}{cc}1&0\\0&0\end{array}\right]$. Since $P$ is given by left multiplication by a matrix, $P$ is clearly linear. Since $A$ is diagonal, the characteristic values are the diagonal values. Thus the characteristic values of $A$ are $0$ and $1$. The characteristic polynomial is a degree two monic polynomial for which both $0$ and $1$ are roots. Therefore the characteristic polynomial is $x(x-1)$. If the characteristic polynomial is a product of distinct linear terms then it must equal the minimal polynomial. Thus the minimal polynomial is also $x(x-1)$.


Exercise 6.4.9

Let $A$ be an $n\times n$ matrix with characteristic polynomial
$$f=(x-c_1)^{d_1}\cdots(x-c_k)^{d_k}.$$Show that
$$c_1d_1+\cdots+c_kd_k=\text{trace}(A).$$Solution: Suppose $A$ is $n\times n$. Claim: $|xI-A|=x^n+\text{trace}(A)x^{n-1}+\cdots$. Proof by induction: case $n=2$. $A=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]$. $|xI-A|=x^2-(a+d)x+(ad-bc)$. The trace of $A$ is $a+d$ so we have established the claim for the case $n=2$. Suppose true for up to $n-1$. Let $r=a_{22}+a_{33}+\cdots+a_{nn}$. Then
$$\left|\begin{array}{cccc}
x-a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & x-a_{22} & \cdots & a_{2n}\\
\ddots & \ddots & \cdots & \ddots\\
a_{n1} & a_{n2} & \cdots & x-a_{nn}
\end{array}\right|$$Now expanding by minors using the first column, and using induction, we get that this equals
$$(x-a_{11})(x^{n-1}-rx^{n-2}+\cdots)$$$$-a_{21}(\text{polynomial of degree $n-2$})$$$$+a_{31}(\text{polynomial of degree $n-2$})$$$$+\cdots$$$$=x^n+(r+a_{11})x^{n-1}+\text{polynomial of degree at most $n-2$}$$$$=x^n-\text{tr$(A)$}x^{n-1} +\cdots$$Now if $f(x)=(x-c_1)^{d_1}\cdots(x-c_k)^{d_k}$ then the coefficient of $x^{n-1}$ is $c_1d_1+\cdots c_kd_k$ so it must be that $c_1d_1+\cdots c_kd_k=\text{tr}(A)$.


Exercise 6.4.10

Let $V$ be the vector space of $n\times n$ matrices over the field $F$. Let $A$ be a fixed $n\times n$ matrix. Let $T$ be the linear operator on $V$ defined by
$$T(B)=AB.$$Show that the minimal polynomial for $T$ is the minimal polynnomial for $A$.

Solution: If we represent a $n\times n$ matrix as a column vector by stacking the columns of the matrix on top of each other, with the first column on the top, then the transformation $T$ is represented in the standard basis by the matrix
$$M=\left[\begin{array}{cccc}A & & & \\& A & \Large 0 & \\ & \Large 0 & \ddots & \\ & & & A\end{array}\right].$$And since
$$f(M)=\left[\begin{array}{cccc}f(A) & & & \\& f(A) & \Large 0 & \\ & \Large 0 & \ddots & \\ & & & f(A)\end{array}\right]$$it is evident that $f(M)=0$ $\Leftrightarrow$ $f(A)=0$.


Exercise 6.4.11

Let $A$ and $B$ be $n\times n$ matrices over the field $F$. According to Exercise 9 of Section 6.2, the matrices $AB$ and $BA$ have the same characteristic values. Do they have the same characteristic polynomial? Do they have the same minimal polynomial?

Solution: In Exercise 9 Section 6.2 we showed $|xI=AB|=0$ $\Leftrightarrow$ $|xI-BA|=0$. Thus we have two monic polynomials of degree $n$ with exactly the same roots. Thuse they are equal. So the characteristic polynomials are equal. But the minimum polynomials need not be equal. To see this let $A=\left[\begin{array}{cc}0&0\\1&0\end{array}\right]$ and $B=\left[\begin{array}{cc}1&0\\0&0\end{array}\right]$. Then $AB=\left[\begin{array}{cc}0&0\\1&0\end{array}\right]$ and $BA=\left[\begin{array}{cc}0&0\\0&0\end{array}\right]$ so the minimal polynomial of $BA$ is $x$ and the minimal polynomial of $AB$ is clearly not $x$ (it is in fact $x^2$).

Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.

This Post Has 2 Comments

  1. in question no. 7 it should be X^(n+1) rather than x^n

    1. Thank you, the size of the matrix is $(n+1)\times n+1$. I forget one more row.

Leave a Reply

Close Menu