If you find any mistakes, please make a comment! Thank you.

Identify Dih(2n) as a subgroup of general linear group of dimension 2 over real numbers


Let $n \in \mathbb{Z}^+$, let $r$ and $s$ be the usual generators of $D_{2n}$, and let $\theta = 2 \pi / n$.

(1) Prove that the matrix $T = \left[ {\cos \theta \atop \sin \theta} {-\sin \theta \atop \cos \theta} \right]$ is the matrix of the linear transformation which rotates the $xy$-plane about the origin in a counterclockwise direction by $\theta$ radians.
(2) Prove that the map $\varphi : D_{2n} \rightarrow GL_2(\mathbb{R})$ defined on the generators by $\varphi(r) = \left[ {\cos \theta \atop \sin \theta} {-\sin \theta \atop \cos \theta} \right]$ and $\varphi(s) = \left[ {0 \atop 1} {1 \atop 0} \right]$ extends to a homomorphism of $D_{2n}$ to $GL_2(\mathbb{R})$.
(3) Prove that the homomorphism in Part (2) is injective.


Solution:

(1) Let $v = \langle x, y \rangle$ be a vector in $\mathbb{R}^2$. In polar coordinates, this point is $\langle \sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x} \rangle$. Consider the action of the given matrix on $v$: we have $$\left[ {\cos \theta \atop \sin \theta} {-\sin \theta \atop \cos \theta} \right] \cdot \left[ x \atop y \right] = \left[ {x \cos \theta -y \sin \theta} \atop {x \sin \theta + y \cos \theta} \right],$$ Which in polar coordinates has radius $$\sqrt{(x \cos \theta – y \sin \theta)^2 + (x \sin \theta + y \cos \theta)^2}$$ and angle $$\tan^{-1} \left( \frac{x \sin \theta + y \cos \theta}{x \cos \theta – y \sin \theta} \right).$$ Note, however, that \begin{align*} &\ (x \cos \theta – y \sin \theta)^2 + (x \sin \theta + y \cos \theta)^2\\ = &\ x^2(\cos^2 \theta + \sin^2 \theta) + y^2(\cos^2 \theta + \sin^2 \theta)\\ = &\ x^2 + y^2, \end{align*} so the radius of the image of $v$ is in fact $\sqrt{x^2 + y^2}$. Moreover, note that \begin{align*} &\ \tan \left( \tan^{-1} \left( \frac{y}{x} \right) + \theta \right)\\ =&\ \frac{\sin(\tan^{-1}(y/x) + \theta)}{\cos(\tan^{-1}(y/x) + \theta)}\\ =&\ \frac{x \sin \theta + y \cos \theta}{x \cos \theta – y \sin \theta} \end{align*} by the angle sum formulas for sine and cosine. Thus we have $$ \tan^{-1} \left( \frac{x \sin \theta + y \cos \theta}{x \cos \theta – y \sin \theta} \right) = \tan^{-1}\left( \frac{y}{x} + \theta \right).$$ Hence in polar coordinates, $$ T \cdot \langle \sqrt{x^2 + y^2}, \tan^{-1}(y/x) \rangle = \langle \sqrt{x^2 + y^2}, \tan^{-1}(y/x) + \theta \rangle.$$ So $T$ is in fact the transformation which rotates the xy-plane by \theta radians counterclockwise about the origin.

(2) First we prove a lemma.

Lemma 1. Let $S = \{ r,s \}$ and $G$ be a group. $If \overline{\varphi} : S \rightarrow G$ is a mapping such that $\overline{\varphi}(r)^n = 1$, $\overline{\varphi}(s)^2 = 1$, and $\overline{\varphi}(r) \overline{\varphi}(s) = \overline{\varphi}(s) \overline{\varphi}(r)^{-1}$, then $\overline{\varphi}$ extends to a homomorphism $\varphi : D_{2n} \rightarrow G$. Moreover, if no power of $\overline{\varphi}(r)$ is equal to $\overline{\varphi}(s)$ and the powers $\overline{\varphi}(r)^k$ are distinct for $0 \leq k < n$, then $\varphi$ is injective.

Proof: We have that $\overline{\varphi}(r)$ and $\overline{\varphi}(s)$ satisfy the relations of $D_{2n}$. Now every element of $D_{2n}$ can be written uniquely as $s^ar^b$ for some $0 \leq a < 2$ and $0 \leq b < n$; define $\varphi$ by $$\varphi(s^ar^b) = \overline{\varphi}(s)^a \overline{\varphi}(r)^b.$$ Now if $s^ar^b$ and $s^cr^d$ are elements of $D_{2n}$, we have $$\varphi(s^ar^bs^cr^d) = \varphi(s^{a+c} r^{d-b}) = \overline{\varphi}(s)^{a+c} \overline{\varphi}(r)^{d-b} = \overline{\varphi}(s)^a \overline{\varphi}(r)^b \overline{\varphi}(s)^c \overline{\varphi}(r)^d = \varphi(s^ar^b) \varphi(s^cr^d),$$ hence $\varphi$ is a homomorphism. To see injectivity, suppose that $\varphi(s^ar^b) = \varphi(s^cr^d)$ but that $s^ar^b \neq s^cr^d$; then either $a \neq c$ or $b \neq d$. Then we have $$\overline{\varphi}(s)^a \overline{\varphi}(r)^b = \overline{\varphi}(s)^c \overline{\varphi}(r)^d.$$ If $a \neq c$ then without loss of generality, $a = 1$ and $c = 0$. Then we have $\overline{\varphi}(r)^{b-d} = \overline{\varphi}(s)$, a contradiction. On the other hand, if $a = c$ and $b \neq d$ then we have $\overline{\varphi}(r)^b = \overline{\varphi}(r)^d$, a contradiction. Thus $\varphi$ is injective.


Now by the lemma, it suffices to show that $\overline{\varphi}(r)^n = 1$, $\overline{\varphi}(s)^2 = 1$, and $$\overline{\varphi}(r) \overline{\varphi}(s) = \overline{\varphi}(s) \overline{\varphi}(r)^{-1}.$$ To this end, we prove another lemma.

Lemma 2. For all $k \in \mathbb{Z}^+$, $\overline{\varphi}^k = \left[ {\cos k \theta \atop \sin k \theta} {-\sin k \theta \atop \cos k \theta} \right]$.

Proof: We proceed by induction on $k$. The base case is trivial. Now suppose the conclusion holds for some k; then \begin{align*} &\ \overline{\varphi}(r)^{k+1} = \overline{\varphi}(r)^k \cdot \overline{\varphi}\\ =&\ \left[ {\cos k\theta \atop \sin k\theta} {-\sin k\theta \atop \cos k\theta} \right] \cdot \left[ {\cos \theta \atop \sin \theta} {-\sin \theta \atop \cos \theta} \right]\\ =&\ \left[ {\cos \theta \cos k\theta – \sin \theta \sin k \theta \atop \cos \theta \sin k\theta + \sin \theta \cos k\theta} {-(\sin \theta \cos k\theta + \cos \theta \sin k\theta) \atop \cos \theta \cos k\theta – \sin \theta \sin k\theta} \right]\\ =&\ \left[ {\cos (k+1)\theta \atop \sin (k+1)\theta} {-\sin (k+1)\theta \atop \cos (k+1)\theta} \right] \end{align*} using the angle sum formulas for sine and cosine. By induction, the lemma is proved. $\blacksquare$

We now show that $\varphi$ is a homomorphism. We have $$\overline{\varphi}(r)^n = \left[ {\cos 2\pi \atop \sin 2\pi} {-\sin 2\pi \atop \cos 2\pi} \right] = I_2.$$ Also, clearly $\overline{\varphi}(s)^2 = I$. Finally it is easy to check that $(\overline{\varphi}(s) \overline{\varphi}(r))^2 = I_2$, and hence $$\overline{\varphi}(r)\overline{\varphi}(s) = \overline{\varphi}(s)\overline{\varphi}(r)^{-1}.$$ By Lemma 1, then, $\varphi$ is a homomorphism.

(3) By Lemma 1, it suffices to show that the powers $\overline{\varphi}(r)^k$ are distinct for $0 \leq k < n$ and that $\overline{\varphi}(r)^k \neq \overline{\varphi}(s)$. These both follow from Lemma 2.

Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu