If you find any mistakes, please make a comment! Thank you.

Compute the kernel of the left regular action of a group on itself


Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 1.7 Exercise 1.7.13

Find the kernel of the left regular action.


Solution: Recall that the left regular action of a group $G$ on itself is given merely by left multiplication. I claim that the kernel of this action is the trivial subgroup. Suppose $g$ is in the kernel; then for all $a \in G$, $ga = g \cdot a = a$. Right multiplying by $a^{-1}$ we see that $g = 1$, as desired.

Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.

Leave a Reply

Close Menu