If you find any mistakes, please make a comment! Thank you.

Use Sylow’s Theorem to prove Cauchy’s Theorem

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 4.5 Exercise 4.5.1

Solution: Let $G$ be a finite group and $p$ a prime dividing $|G|$. By Sylow’s Theorem, $G$ has a Sylow $p$-subgroup $P$. Since $P$ is a $p$-group, $Z(P)$ is nontrivial. Now $Z(P)$ is an abelian $p$-group, so that (by Cauchy’s Theorem for abelian groups) there exists an element $x \in Z(P) \leq P \leq G$ of order $p$.


This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu