If you find any mistakes, please make a comment! Thank you.

The Boolean ring of subsets is isomorphic to the ring of characteristic functions


Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.3 Exercise 7.3.15

Solution: Let $\Phi : \mathcal{P}(X) \rightarrow {}^X\mathbb{Z}/(2)$ be the mapping given by $A \mapsto \chi_A$, and let $A,B \in \mathcal{P}(X)$.

We first consider $\Phi(A+B)$. There are 4 cases.

(1) Suppose $x \in A$ and $x \in B$. Then $x \notin A \setminus B$ and $x \notin B \setminus A$, so that $$x \notin (A \setminus B) \cup (B \setminus A) = A+B. $$Thus $$\Phi(A+B)(x) = 0 = 1 + 1 = \Phi(A)(x) + \Phi(B)(x) (\Phi(A)+\Phi(B))(x)$$ Hence $\Phi(A+B) = \Phi(A) + \Phi(B)$.

(2) Suppose $x \in A$ and $x \notin B$. Then $x \in A \setminus B$, so that $$x \in (A \setminus B) \cup (B \setminus A) = A+B.$$ Then $$\Phi(A+B)(x) = 1 = 1+0 = \Phi(A)(x) + \Phi(B)(x) = (\Phi(A)+\Phi(B))(x),$$ and we have $\Phi(A+B) = \Phi(A) + \Phi(B)$.

(3) The case $x \notin A$ and $x \in B$ is similar to the previous one.

(4) Suppose $x \notin A$ and $x \notin B$. Then $x \notin A \setminus B$ and $x \notin B \setminus A$, so that $$x \notin (A \setminus B) \cup (B \setminus A) = A+B.$$ Thus $$\Phi(A+B)(x) = 0 = 0+0 = \Phi(A)(x) + \Phi(B)(x) = (\Phi(A)+\Phi(B))(x).$$ Hence $\Phi(A+B) = \Phi(A)+\Phi(B)$.

Thus for all $A,B \in \mathcal{P}(X)$, $\Phi(A+B) = \Phi(A)+\Phi(B)$.

Now we consider $\Phi(AB)$. Again there are four cases.

(1) Suppose $x \in A$ and $x \in B$. Then $x \in A \cap B = AB$, so that $$\Phi(AB)(x) = 1 = 1 \cdot 1 = \Phi(A)(x) \cdot \Phi(B)(x) = (\Phi(A) \cdot \Phi(B))(x). $$Thus $\Phi(AB) = \Phi(A)\Phi(B)$.

(2) Suppose $x \in A$ and $x \notin B$.Then $x \notin A \cap B = AB$, so that $$\Phi(AB)(x) = 0 = 1 \cdot 0 = \Phi(A)(x) \cdot \Phi(B)(x) = (\Phi(A) \cdot \Phi(B))(x).$$ Thus $\Phi(AB) = \Phi(A)\Phi(B)$.

(3) The case $x \notin A$ and $x \in B$ is similar to the previous one.

(4) Suppose $x \notin A$ and $x \notin B$. Then $x \notin A \cap B = AB$, and we have $$\Phi(AB)(x) = 0 = 0 \cdot 0 = \Phi(A)(x) \cdot \Phi(B)(x) = (\Phi(A)\Phi(B))(x).$$ Thus $\Phi(AB) = \Phi(A)\Phi(B)$.

Thus for all $A,B \in \mathcal{P}(X)$, $\Phi(AB) = \Phi(A)\Phi(B)$, and $\Phi$ is a ring homomorphism.

Next we show that $\Phi$ is surjective. Let $\omega \in {}^X \mathbb{Z}/(2)$, and let $A_\omega = \omega^\ast(1)$. ($\omega^\ast$ denotes preimage.) I claim that $\Phi(A_\omega) = \omega$. To that end, suppose $x \in A_\omega$. Then $\Phi(A_\omega)(x) = 1 = \omega(x)$. Likewise, if $x \notin A_\omega$, then $\Phi(A_\omega)(x) = 0 = \omega(x)$. Thus $\Phi$ is surjective.

Next we show that $\Phi$ is injective. To that end, suppose $\Phi(A) = \Phi(B)$. Suppose $x \in A$; then $\Phi(A)(x) = 1 = \Phi(B)(x)$, and we have $x \in B$. Thus $A \subseteq B$. Symmetrically, $B \subseteq A$, and we have $A = B$. Thus $\Phi$ is injective.

Thus $\Phi$C is a ring isomorphism.


Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu