Let a system of vectors ${\bf v}_1$, ${\bf v}_2$, $\cdots$, ${\bf v}_r$ be linearly independent but not generating. Show that it is possible to find a vector ${\bf v}_{r+1}$ such that the system ${\bf v}_1$, ${\bf v}_2$, $\cdots$, ${\bf v}_r$, ${\bf v}_{r+1}$ is linearly independent. **Hint**: Take for ${\bf v}_{r+1}$ any vector that cannot be represented as a linear combination $\sum_{k=1}\alpha_k{\bf v}_{k}$ and show that the system ${\bf v}_1$, ${\bf v}_2$, $\cdots$, ${\bf v}_r$, ${\bf v}_{r+1}$ is linearly independent. (more…)