If you find any mistakes, please make a comment! Thank you.

Chapter 7 Exercise B

1. Solution: It is true. Consider the standard orthonormal basis $e_1,e_2,e_3$ of $\mb R^3$.Define $T\in \ca L(\mb R^3)$ by the rule:\[Te_1=e_1,\quad Te_2=2e_2+e_1,\quad Te_3=3e_3.\]Since we have\[\langle Te_1,e_2\rangle =\langle e_1,e_2\rangle =0,\]\[\langle e_1,Te_2\rangle…

Continue Reading

Chapter 3 Exercise B

1. Solution: Assume $V$ is 5-dimensional vector space with a basis $e_1$, $\cdots$, $e_5$. Define $T\in\ca L(V,V)$ by \[Te_1=e_1,Te_2=e_2,Te_3=Te_4=Te_5=0.\]Then $\mathrm{null} T=\mathrm{span}(e_3,e_4,e_5)$, hence $\dim \mathrm{null} T=3$. Similarly, $\mathrm{range} T=\mathrm{span}(e_1,e_2)$, hence $\dim…

Continue Reading
Close Menu