Chapter 5 Exercise B


1. Solution: (a) Note that \[ (I-T)(I+T+\cdots+T^{n-1})=I-T^n=I \]and \[ (I+T+\cdots+T^{n-1})(I-T)=I-T^{n}=I ,\](in fact we just need to check only one) it follows that $I-T$ is invertible and \[(I-T)^{-1}=I+T+\cdots+T^{n-1}.\] (b) From the familiar formula \[1-x^n=(1-x)(1+x+\cdots+x^{n-1}).\]


2. Solution: Let $v$ be an eigenvector of $T$ corresponding to $\lambda$, then we have $Tv=\lambda v$. Similarly, we have \[T^2v=T(\lambda v)=\lambda^2 v\quad T^3v=T(\lambda^2 v)=\lambda^3 v,\]and $T^nv=\lambda^n v$ for $n\in \mb N^+$. This implies for any polynomial $p$, we have $p(T)v=p(\lambda)v$. Hence \[0=(T-2I)(T-3I)(T-4I)v=(\lambda-2)(\lambda-3)(\lambda-4)v.\]As $v\ne 0$, it follows that \[(\lambda-2)(\lambda-3)(\lambda-4)=0.\]Thus $\lambda=2$ or $\lambda=3$ or $\lambda=4$.


3. Solution: Note that for any $v\in V$, we have \begin{equation}\label{5BP31}v=\frac{1}{2}(v-Tv)+\frac{1}{2}(v+Tv).\end{equation} Since $T^2-I$, it follows that \[(T+I)\left(\frac{1}{2}(v-Tv)\right)=\frac{1}{2}(I-T^2)v=0.\]Hence $\frac{1}{2}(v-Tv)\in \m{null}(T+I)$.Similarly we have \[ \frac{1}{2}(v+Tv)\in \m{null}(T-I). \]By $(\ref{5BP31})$, it follows that $V=\m{null}(T-I)+\m{null}(T+I)$. However, $-1$ is not an eigenvalue of $T$. Hence $\m{null}(T+I)=\{0\}$. Thus $V=\m{null}(T-I)$. This implies $T=I$, since for any $v\in V$ we have $Tv-v=(T-I)v=0$.


4. Solution: Note that for any $v\in V$, we have \begin{equation}\label{5BP41} v=Pv+(v-Pv). \end{equation} It is clear that $Pv\in\m{range}P$. Since $P^2=P$, it follows that $P(v-Pv)=(P-P^2)v=0$. Thus $v-Pv\in\m{null}P$. By $(\ref{5BP41})$, we have $V=\m{null}P+ \m{range}P$. Suppose $v\in \m{null}P\cap \m{range}P$, then there exists $u\in V$ such that $Pu=v$. Moreover $Pv=0$. Hence\[0=Pv=P(Pu)=P^2u=Pu=v.\]This implies $\m{null}P\cap \m{range}P=\{0\}$. Therefore $V=\m{null}P\oplus \m{range}P$.


5. Solution: See Linear Algebra Done Right Solution Manual Chapter 5 Problem 14.


6. Solution: Note that $TU\subset U$, one can easily deduce $T^n U\subset U$ for any $n\in\mb N^+$ by induction. Hence $\lambda T^n U\subset U$ for any $\lambda\in\mb F$ since $U$ is a vector space. If we assume for any $p\in\ca P(\mb F)$ with $\deg p\le n-1$, $U$ is invariant under $p(T)$. Then we will show $U$ is invariant under $q(T)$ for every polynomial $q\in\ca P(\mb F)$ with $\deg q=n$. Let $q=\sum_{k=0}^n a_kx^k$, then \begin{align*} q(T)U=&\left(\sum_{k=0}^n a_kT^k\right)U=\left(\sum_{k=0}^{n-1} a_kT^k\right)U+a_nT^nU\\ \subset&U+U=U. \end{align*} Here $U+U=U$ by Problem 15 of Exercise 1C. Hence $U$ is invariant under $q(T)$ for every polynomial $q\in\ca P(\mb F)$ with $\deg q=n$. By induction, we conclude $U$ is invariant under $p(T)$ for every polynomial $p\in\ca P(\mb F)$.


7. Solution: By problem 2, we have $T^2v=\lambda^2v$ if $v$ be an eigenvector of $T$ corresponding to $\lambda$. Hence $3$ or $-3$ is an eigenvalue of $T$, then $9$ is an eigenvalue of $T^2$ since $3^2=9$ and $(-3)^2=9$. Conversely, if $9$ is an eigenvalue of $T^2$. It follows that $T^2-9I$ is not injective, namely $(T-3I)(T+3I)$ is not injective. By Problem 11 of Exercise 3B, we have $T-3I$ or $T+3I$ is not injective. Hence we conclude $3$ or $-3$ is an eigenvalue of $T$. (My apologies for using 5.6, it is only true for finite-dimensional $V$.)


8. Solution: Denote $T\in \ca L(\mb \R^2)$ by \[T(x,y)=\left(\frac{\sqrt{2}}{2}x-\frac{\sqrt{2}}{2}y,\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\right).\]You can directly check that $T^4=-I$.

Here I use a fact that \[ \left( \begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \\ \end{array} \right)^n=\left( \begin{array}{cc} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \\ \end{array} \right) \]


9. Solution: By definition, an eigenvalue of $T$ must be contained in $\mb F$, hence we should assume that every zero of $p$ is in $\mb F$. Let $\lambda$ be a zero of $p$, then by 4.11 we have $p(z)=(z-\lambda)q(z)$, where $q(z)\in \ca P(\mb F)$. Suppose $\lambda$ is not an eigenvalue of $T$, then $T-\lambda I$ is injective. Hence \[0=p(T)v=(T-\lambda I)q(T)v\]implies $q(T)v=0$. However $\deg q<\deg p$ and $q$ is nonzero(otherwise $p$ is zero). This contradicts with the choice of $p$. Thus every zero of $p$ is an eigenvalue of $T$.


10. Solution: By the proof of Problem 2, it follows that $T^nv=\lambda^n v$. Hence for $p\in P(\mb F)$, suppose \[p=\sum_{n=0}^ka_nx^n.\]Then \begin{align*} p(T)v=&\left(\sum_{n=0}^ka_nT^n\right)v =\sum_{n=0}^ka_nT^nv =\sum_{n=0}^ka_n\lambda^nv=p(\lambda)v. \end{align*}


11. Solution: See Linear Algebra Done Right Solution Manual Chapter 5 Problem 15.


12. Solution: See Linear Algebra Done Right Solution Manual Chapter 5 Problem 16.


13. Solution: Suppose a subspace $U$ of $W$ invariant under $T$ and $\dim U<\infty$. If $U\ne \{0\}$, then by 5.21, $T|_U$ has an eigenvalue with an eigenvector $v$($v\ne 0$). That is $T|_U(v)=\lambda v$, namely $Tv=\lambda v$. Note that $v\ne 0$, we conclude $T$ has an eigenvalue $\lambda$. We get a contradiction since $T\in\ca L(W)$ has no eigenvalues. Hence every subspace of $W$ invariant under $T$ is either $\{0\}$ or infinite-dimensional.


14. Solution: See Linear Algebra Done Right Solution Manual Chapter 5 Problem 18.


15. Solution: See Linear Algebra Done Right Solution Manual Chapter 5 Problem 19.


16. Solution: Define $\vp:\ca P_n(\C)\to V$ by $\vp(p)=p(T)v$, then $\vp$ is a linear map(check it). Note that $\dim \ca P_n(\C)=n+1$ and $\dim V=n$, it follows that $\vp$ is not injective by 3.23. Hence there exists a nonzero $p\in \ca P_n(\C)$ such that $p(T)v=0$. The remained is the same as 5.21.


17. Solution: Define $\vp:\ca P_{n^2}(\C)\to \ca L(V)$ by $\vp(p)=p(T)$, then $\vp$ is a linear map(check it). Note that $\dim \ca P_{n^2}(\C)=n^2+1$ and $\dim \ca L(V)=n^2$, it follows that $\vp$ is not injective by 3.23. Hence there exists a nonzero $p\in \ca P_n(\C)$ such that $p(T)=0$. This implies $p(T)v=0$. The remained is the same as 5.21.


18. Solution: Let $\lambda_0$ be an eigenvalue of $T$, then $T-\lambda_0I$ is not surjective by 5.6. Hence $\dim \m{range}(T-\lambda I)<\dim V$. Note that $T$ has only finitely many eigenvalues, there exist a sequence of number $\lambda_n$ such that \[ \lim_{n\to\infty}\lambda_n=\lambda_0 \]and $\lambda_n$ are not eigenvalues of $T$. Then by 5.6, $T-\lambda_nI$ is surjective. Hence\[\dim \m{range}(T-\lambda_nI)=\dim V.\]This implies $\lambda_n\to\lambda_0$, but \[f(\lambda_0)\ne\lim_{n\to\infty}f(\lambda_n).\]Thus $f$ is not a continuous function.


19. Solution: Note that $Tp(T)=p(T)T$, if $\{p(T): p\in\ca P(\mb F)\}=\ca L(V)$, then $ST = TS$ for every $S\in\ca L(V)$. By Problem 16 of Exercises 3D, it follows that $T$ is a scalar multiple of the identity. Suppose $T=\lambda I$, then \[ \{p(T): p\in\ca P(\mb F)\}=\{p(\lambda)I:p\in\ca P(\mb F)\}=\{\mu I:\mu\in\mb F\}. \]Since $\dim V>1$, we have \[\dim \ca L(V)=(\dim V)^2\]and\[\dim\{p(T): p\in\ca P(\mb F)\}=1.\]Hence\[\{p(T): p\in\ca P(\mb F)\}\ne\ca L(V).\]


20. Solution: See Linear Algebra Done Right Solution Manual Chapter 5 Problem 17.

Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *