Chapter 6 Exercise C
1. Solution: Suppose $w \in \{v_1, \dots, v_m\}^\perp$. Let $v = \in \operatorname{span}(v_1, \dots, v_m)$. We have that $$ v = a_1 v_1 + \dots a_m v_m $$ for some…
1. Solution: Suppose $w \in \{v_1, \dots, v_m\}^\perp$. Let $v = \in \operatorname{span}(v_1, \dots, v_m)$. We have that $$ v = a_1 v_1 + \dots a_m v_m $$ for some…
1. Solution: (a) One can easily check that each of the four vectors has norm $\sin^2 \theta + \cos^2 \theta$, which equals $1$. Moreover, we have $$ \begin{aligned} \langle (\cos\theta,…
2. Solution: It does not satisfy definiteness. For the function takes $(0,1,0)$, $(0,1,0)$ to $0$, but $(0,1,0)\ne 0$. 4. Solution: (a) Note that $V$ is a real inner product space,…
1. Solution: It is not said $V$ is finite-dimensional, but I will do it by assuming $\dim V<\infty$. If $T$ is invertible, then $\m{null}{T}=0$ and $\m{range} T=V$ since $T$ is…
1. Solution: (a) Note that \[ (I-T)(I+T+\cdots+T^{n-1})=I-T^n=I \]and \[ (I+T+\cdots+T^{n-1})(I-T)=I-T^{n}=I ,\](in fact we just need to check only one) it follows that $I-T$ is invertible and \[(I-T)^{-1}=I+T+\cdots+T^{n-1}.\] (b) From the…
1. Solution: (a) For any $u\in U$, then $Tu=0\in U$ since $U\subset \m{null} T$, hence $U$ is invariant under $T$. (b) For any $u\in U$, then $Tu\in\m{range} T \subset U$,…
1. Empty 2. Solution: False. Consider $1=(z^m+1)+(-z^m)\notin \{0\}\cup\{p\in\ca P(\mb F):\deg p=m\}$. Note that \[(z^m+1)\in \{0\}\cup\{p\in\ca P(\mb F):\deg p=m\}\]and\[-z^m\in \{0\}\cup\{p\in\ca P(\mb F):\deg p=m\},\]it follows that $\{0\}\cup\{p\in\ca P(\mb F):\deg p=m\}$ is not…
1. Solution: For any $\vp\in\ca L(V,\mb F)$, if $\dim \m{range} \vp=0$, then $\vp$ is the zero map. If $\dim \m{range} \vp=1$, then $\vp$ is surjective since $\dim\mb F=1$. Moreover, $\dim…
Exercises 1,2 and 4. For Problem 2, please also see Carson Rogers’s comment. 4. Solution: For any $f\in \ca L(V_1\times \cdots\times V_m,W)$ and given $i\in \{1,\cdots,m\}$, define $f_i:V_i\to W$ by…
1. Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem 22. It is almost the same. 2. Solution: See Linear Algebra Done Right Solution Manual Chapter 3 Problem…