If you find any mistakes, please make a comment! Thank you.

Solution to Linear Algebra Hoffman & Kunze Chapter 1.3

Exercise 1.3.1 The matrix of coefficients is $$\left[\begin{array}{cc}1-i&-i\\2&1-i\end{array}\right].$$Row reducing $$\rightarrow \left[\begin{array}{cc}2&1-i\\1-i&-i\end{array}\right]\rightarrow\left[\begin{array}{cc}2&1-i\\0&0\end{array}\right] $$Thus $2x_1+(1-i)x_2=0$. Thus for any $x_2\in\mathbb C$, $(\frac12(i-1)x_2,x_2)$ is a solution and these are all solutions. Exercise 1.3.2 We…

Continue Reading
Close Menu