If you find any mistakes, please make a comment! Thank you.

Embed a ring of quadratic integers in a ring of matrices


Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.3 Exercise 7.3.12

Solution: We begin with a lemma.

Lemma: If $D \in \mathbb{Z}$ is not a perfect square, then $\sqrt{D}$ is not rational.

Proof: Suppose to the contrary that $\sqrt{D} = a/b$. Then $D = a^2/b^2$, and $Db^2 = a^2$. Note, however, that some divisor of $D$ must have odd multiplicity in the factorization of $D$, and thus of $Db^2$, while all divisors of $a^2$ have even multiplicity. $\square$

As a consequence of this lemma, if $D$ is not a perfect square and $$a_1 + b_1\sqrt{D} = a_2 + b_2 \sqrt{D},$$ then $a_1 = a_2$ and $b_1 = b_2$. To see this, suppose $b_1 \neq b_2$. Then $\sqrt{D} = (a_1 – a_2)/(b_2 – b_1)$ is rational, a contradiction. Thus $b_1 = b_2$, and $a_1 = a_2$. Similarly, if $D$ is squarefree, then $$a_1 + b_1 \frac{1 + \sqrt{D}}{2} = a_2 + b_2\frac{1+\sqrt{D}}{2}$$ implies that $a_1 = a_2$ and $b_1 = b_2$.

(1) Note that $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in S$. Now let $A = \begin{bmatrix} a_1 & b_1 \\ Db_1 & a_1 \end{bmatrix}$, $B = \begin{bmatrix} a_2 & b_2 \\ Db_2 & a_2 \end{bmatrix} \in S$. Evidently, $$A – B = \begin{bmatrix} a_1 – a_2 & b_1 – b_2 \\ D(b_1 – b_2) & a_1 – a_2 \end{bmatrix} \in S$$ and $$AB = \begin{bmatrix} a_1a_2 + Db_1b_2 & a_1b_2 + b_1a_2 \\ D(a_1b_2 + b_1a_2) & a_1a_2 + Db_1b_2 \end{bmatrix} \in S.$$ Thus $S$ is a subring of $M_2(\mathbb{Z}$).

Define $\varphi : \mathbb{Z}[\sqrt{D}] \rightarrow S by a+b\sqrt{D} \mapsto \begin{bmatrix} a & b \\ Db & a \end{bmatrix}$. By the lemma and the discussion following it, $\varphi$ is well defined. Evidently we have the following for all $\alpha = a_1 + b_1\sqrt{D}$ and $\beta = a_2 + b_2\sqrt{D}$.
\begin{align*}\varphi(\alpha + \beta) =&\ \varphi((a_1 + b_1 \sqrt{D}) + (a_2 + b_2\sqrt{D}))\\
=&\ \varphi((a_1 + a_2) + (b_1 + b_2)\sqrt{D})\\
=&\ \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ D(b_1 + b_2) & a_1 + a_2 \end{bmatrix}\\
=&\ \begin{bmatrix} a_1 & b_1 \\ Db_1 & a_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ Db_2 & a_2 \end{bmatrix}\\
=&\ \varphi(a_1 + b_1\sqrt{D}) + \varphi(a_2 + b_2 \sqrt{D})\\
=&\ \varphi(\alpha) + \varphi(\beta)\end{align*} \begin{align*}\varphi(\alpha\beta) =&\ \varphi((a_1 + b_1\sqrt{D})(a_2 + b_2\sqrt{D}))\\
=&\ \varphi((a_1a_2 + Db_1b_2) + (a_1b_2 + a_2b_1)\sqrt{D})\\
=&\ \begin{bmatrix} a_1a_2 + Db_1b_2 & a_1b_2 + a_2b_1 \\ D(a_1b_2 + a_2b_1) & a_1a_2 + Db_1b_2 \end{bmatrix}\\
=&\ \begin{bmatrix} a_1 & b_1 \\ Db_1 & a_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ Db_2 & a_2 \end{bmatrix}\\
=&\ \varphi(a_1 + b_1\sqrt{D}) \cdot \varphi(a_2 + b_2\sqrt{D})\\
=&\ \varphi(\alpha) \cdot \varphi(\beta)\end{align*}Thus $\varphi$ is a homomorphism of rings. Now if $\begin{bmatrix} a & b \\ Db & a \end{bmatrix} \in S$, then $\varphi(a + b\sqrt{D}) = \begin{bmatrix} a & b \\ Db & a \end{bmatrix}$, so that $\varphi$ is surjective. Suppose now that $a+b\sqrt{D}$ is in the kernel of $\varphi$. Then $$\varphi(a+b\sqrt{D}) = \begin{bmatrix} a & b \\ Db & a \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$ so that $a = b = 0$. Thus the kernel of $\varphi$ is trivial, and $\varphi$ is injective. Thus $\varphi$ is a ring isomorphism.

(3) First we show that $S$ is a subring of $M_2(\mathbb{Z})$. To that end, let $A = \begin{bmatrix} a_1 & b_1 \\ \frac{D-1}{4}b_1 & a_1+b_1 \end{bmatrix}$ and $B = \begin{bmatrix} a_2 & b_2 \\ \frac{D-1}{4}b_2 & a_2+b_2 \end{bmatrix}$ be in $S$. Clearly $0 \in S$. Moreover, evidently $$A – B = \begin{bmatrix} a_1 – a_2 & b_1 – b_2 \\ \frac{D-1}{4}(b_1 – b_2) & (a_1 – a_2) + (b_1 – b_2) \end{bmatrix}$$ and $$AB = \begin{bmatrix} a_1a_2 + \frac{D-1}{4}b_1b_2 & a_1b_2 + b_1a_2 + b_1b_2 \\ \frac{D-1}{4}(a_1b_2 + a_2b_1 + b_1b_2) & (a_1a_2 + \frac{D-1}{4}b_1b_2) + (a_1b_2 + a_2b_1 + b_1b_2) \end{bmatrix}.$$ Thus $S$ is a subring.

Now define a mapping $\varphi : \mathcal{O} \rightarrow S$ by $a + b\omega \mapsto \begin{bmatrix} a & b \\ Db & a+b \end{bmatrix}$. Clearly $\varphi$ is well defined. We have the following for all $\alpha = a_1 + b_1\omega$ and $\beta = a_2 + b_2\omega$ in $\mathcal{O}$.\begin{align*}\varphi(\alpha + \beta) =&\ \varphi((a_1 + b_1\omega) + (a_2 + b_2\omega))\\
=&\ \varphi((a_1 + a_2) + (b_1 + b_2)\omega)\\
=&\ \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ \frac{D-1}{4}(b_1 + b_2) & a_1 + a_2 + b_1 + b_2 \end{bmatrix}\\
=&\ \begin{bmatrix} a_1 & b+1 \\ \frac{D-1}{4}b_1 & a_1 + b_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ \frac{D-1}{4}b_2 & a_2 + b_2 \end{bmatrix}\\
=&\ \varphi(a_1 + b_1\omega) + \varphi(a_2 + b_2\omega)\\
=&\ \varphi(\alpha) + \varphi(\beta)\end{align*}\begin{align*}\varphi(\alpha\beta) =&\ \varphi((a_1+b_1\omega)(a_2+b_2\omega))\\
=&\ \varphi((a_1a_2 + b_1b_2\frac{D-1}{4}) + (a_1b_2 + a_2b_1 + b_1b_2)\omega)\\
=&\ \begin{bmatrix} a_1a_2 + b_1b_2\frac{D-1}{4} & a_1b_2 + a_2b_1 + b_1b_2 \\ \frac{D-1}{4}(a_1b_2 + a_2b_1 + b_1b_2) & (a_1a_2 + \frac{D-1}{4}b_1b_2) + (a_1b_2 + a_2b_1 + b_1b_2) \end{bmatrix}\\
=&\ \begin{bmatrix} a_1 & b_1 \\ \frac{D-1}{4}b_1 & a_1 + b_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ \frac{D-1}{4}b_2 & a_2 + b_2 \end{bmatrix}\\
=&\ \varphi(a_1 + b_1\omega) \cdot \varphi(a_2 + b_2\omega)\\
=&\ \varphi(\alpha)\varphi(\beta)\end{align*}Thus $\varphi$ is a ring homomorphism. As before, it is clear that $\varphi$ is surjective and injective; thus $\varphi$ is a ring isomorphism.


Linearity

This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.
Close Menu