If you find any mistakes, please make a comment! Thank you.

Computation of all ring homomorphisms from Z to Z/(30)

Solution to Abstract Algebra by Dummit & Foote 3rd edition Chapter 7.3 Exercise 7.3.4

Find all ring homomorphisms from $\mathbb{Z}$ to $\mathbb{Z}/(30)$. In each case describe the kernel and the image.

Solution: We begin with some lemmas.

Lemma 1: Every ring homomorphism $\varphi : \mathbb{Z} \rightarrow R$ is uniquely determined by $\varphi(1)$.

Proof: This follows because $\varphi$ is an additive group homomorphism, and $\mathbb{Z}$ is free on $\{1\}$. $\square$

Lemma 2: Let $R$ be a ring and let $\varphi : \mathbb{Z} \rightarrow R$ be the additive group homomorphism defined by $\varphi(1) = z$. Then $\varphi$ is a ring homomorphism if and only if $z^2 = z$.

Proof: Suppose $\varphi$ is a ring homomorphism. Then $$z = \varphi(1) = \varphi(1 \cdot 1) = \varphi(1) \varphi(1) = z^2.$$ Suppose now that $z^2 = z$. Then \begin{align*}\varphi(ab) =&\ \varphi\left( \sum_{i=1}^{ab} 1 \right) = \sum_{i=1}^{ab} z = \sum_{i=1}^a \sum_{j=1}^b z \\=&\ \sum_{i=1}^a \sum_{j=1}^b z \cdot z = \sum_{i=1}^a \left( z \sum_{j=1}^b z \right)\\ =&\ \left( \sum_{i=1}^a z \right) \left( \sum_{j=1}^b z \right)\\ =&\ (az)(bz) = \varphi(a)\varphi(b).\end{align*} Thus \varphi is a ring homomorphism. $\square$

By the lemma, the group homomorphism $\varphi_{\overline{a}} : \mathbb{Z} \rightarrow \mathbb{Z}/(30)$ defined by extending $\varphi(1) = \overline{a}$ is a ring homomorphism if and only if $\overline{a}^2 = \overline{a}$ in $\mathbb{Z}/(30)$, and moreover every ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}/(30)$ is obtained in this way. Evidently, $$\overline{a} \in \{ \overline{1}, \overline{6}, \overline{10}, \overline{15}, \overline{21}, \overline{25} \}.$$ Next we prove another lemma.

Lemma 3: Let $\varphi : \mathbb{Z} \rightarrow \mathbb{Z}/(m)$ be a ring homomorphism with $\varphi(1) = \overline{a}$. Then $\mathsf{ker}\ \varphi = \langle m/\mathsf{gcd}(a,m) \rangle$ and $\mathsf{im}\ \varphi = \langle \overline{\mathsf{gcd}(a,m)} \rangle$.

Proof: (1) ($\subseteq$) Let $b \in \mathsf{ker}\ \varphi$. Then $ab = 0 \pmod m$, and we have $ab = mk$ for some $k$. Now write $\mathsf{gcd}(a,m) = d$ and $a = da_2$; note that $\mathsf{gcd}(a_2,m) = 1$ by definition. Now $b = mk/da_2$ is an integer. Since $a_2$ is relatively prime to $m$, it must divide $k$. Let $k_2 = k/a_2$; then $b = mk_2/d \in \langle m/\mathsf{gcd}(a,m) \rangle$.

($\supseteq$) Note that $$\varphi(m/\mathsf{gcd}(a,m)) = am/\mathsf{gcd}(a,m) = \mathsf{lcd}(a,m) = mk \equiv 0 \pmod m,$$ so that $\langle m/\mathsf{gcd}(a,m) \rangle \subseteq \mathsf{ker}\ \varphi$.

(2) ($\subseteq$) Suppose $\overline{b} \in \mathsf{im}\ \varphi$. Then $\overline{b} = \varphi(k) = \overline{ka}$ for some $k \in \mathbb{Z}$, and we have $b = m\ell + ak$ for some $\ell \in \mathbb{Z}$. Thus $\mathsf{gcd}(a,m)$ divides $b$, and we have $\overline{b} \in \langle \overline{\mathsf{gcd}(a,m)} \rangle$.

($\supseteq$) Recall from Bezout’s Identity that $\mathsf{gcd}(a,m) = mx + ay$ for some integers $x$ and $y$. Mod $m$, we have $$\overline{\mathsf{gcd}(a,m)} = \overline{ay} = \varphi(y),$$ so that $\langle \overline{\mathsf{gcd}(a,m)} \rangle \subseteq \mathsf{im}\ \varphi$. $\square$

(1) $\mathsf{ker}\ \varphi_{\overline{1}} = \langle 30 \rangle$ and $\mathsf{im}\ \varphi_{\overline{1}} = \langle \overline{1} \rangle$

(2) $\mathsf{ker}\ \varphi_{\overline{6}} = \langle 5 \rangle$ and $\mathsf{im}\ \varphi_{\overline{6}} = \langle \overline{6} \rangle$

(3) $\mathsf{ker}\ \varphi_{\overline{10}} = \langle 3 \rangle$ and $\mathsf{im}\ \varphi_{\overline{10}} = \langle \overline{10} \rangle$

(4) $\mathsf{ker}\ \varphi_{\overline{15}} = \langle 2 \rangle$ and $\mathsf{im}\ \varphi_{\overline{15}} = \langle \overline{15} \rangle$

(5) $\mathsf{ker}\ \varphi_{\overline{21}} = \langle 10 \rangle$ and $\mathsf{im}\ \varphi_{\overline{21}} = \langle \overline{3} \rangle$

(6) $\mathsf{ker}\ \varphi_{\overline{25}} = \langle 6 \rangle$ and $\mathsf{im}\ \varphi_{\overline{25}} = \langle \overline{5} \rangle$


This website is supposed to help you study Linear Algebras. Please only read these solutions after thinking about the problems carefully. Do not just copy these solutions.

This Post Has One Comment

  1. There is an error following "Evidently": 'a' could also be 0 or 16, yielding homomorphisms with kernel Z and 15Z, respectively. All eight ideals containing 30Z are thus possible kernels.

Leave a Reply

Close Menu